Isolation and crystallization of copper resistance protein B (CopB) from Acinetobacter baumannii

IF 1.4 4区 生物学 Q4 BIOCHEMICAL RESEARCH METHODS Protein expression and purification Pub Date : 2024-11-26 DOI:10.1016/j.pep.2024.106635
Niloofar Nayeri , Kamil Górecki , Karin Lindkvist-Petersson , Pontus Gourdon , Ping Li
{"title":"Isolation and crystallization of copper resistance protein B (CopB) from Acinetobacter baumannii","authors":"Niloofar Nayeri ,&nbsp;Kamil Górecki ,&nbsp;Karin Lindkvist-Petersson ,&nbsp;Pontus Gourdon ,&nbsp;Ping Li","doi":"10.1016/j.pep.2024.106635","DOIUrl":null,"url":null,"abstract":"<div><div><em>Acinetobacter baumannii</em> (<em>A. baumannii</em>) is an opportunistic, Gram-negative human pathogen, which is predominantly found in hospital patients. Its antimicrobial resistance is escalating, leading to less efficient treatments, and an increasing interest in identifying new therapeutic drugs. Metals as antimicrobials are vital in healthcare and agriculture, and copper-containing surfaces are known to reduce microbial counts, also in clinical settings. Indeed, copper (Cu) is an essential element required for survival in all organisms from bacteria to humans, but nevertheless elevated levels are highly toxic for cells. Through different regulatory mechanisms, cells maintain Cu homeostasis, and ion channels and transporters are critical in this process. Precise understanding of such ion transport requires insight into the protein structures of the involved proteins, which will also provide information important for applied sciences. Considering the medical significance of <em>A. baumannii</em> and the possibility to exploit Cu to handle such infections, channels and transporters represent appealing targets. Here we approached the putative outer membrane CopB (Copper resistance protein B) from <em>A. baumannii</em> that is postulated to conduct Cu, with characterization of its structure and function as well as to enable rational drug-design. To this end, we demonstrate in this work procedures to produce purified sample and to recover diffracting protein crystals of CopB. The protein was overproduced in <em>E. coli</em> and membrane extracted in a range of detergents. The solubilized protein was subjected to crystallization, which yielded hits that scatter X-rays to low resolution. Our findings have the potential to pave the way for subsequent drug discovery.</div></div>","PeriodicalId":20757,"journal":{"name":"Protein expression and purification","volume":"227 ","pages":"Article 106635"},"PeriodicalIF":1.4000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Protein expression and purification","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1046592824002079","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Acinetobacter baumannii (A. baumannii) is an opportunistic, Gram-negative human pathogen, which is predominantly found in hospital patients. Its antimicrobial resistance is escalating, leading to less efficient treatments, and an increasing interest in identifying new therapeutic drugs. Metals as antimicrobials are vital in healthcare and agriculture, and copper-containing surfaces are known to reduce microbial counts, also in clinical settings. Indeed, copper (Cu) is an essential element required for survival in all organisms from bacteria to humans, but nevertheless elevated levels are highly toxic for cells. Through different regulatory mechanisms, cells maintain Cu homeostasis, and ion channels and transporters are critical in this process. Precise understanding of such ion transport requires insight into the protein structures of the involved proteins, which will also provide information important for applied sciences. Considering the medical significance of A. baumannii and the possibility to exploit Cu to handle such infections, channels and transporters represent appealing targets. Here we approached the putative outer membrane CopB (Copper resistance protein B) from A. baumannii that is postulated to conduct Cu, with characterization of its structure and function as well as to enable rational drug-design. To this end, we demonstrate in this work procedures to produce purified sample and to recover diffracting protein crystals of CopB. The protein was overproduced in E. coli and membrane extracted in a range of detergents. The solubilized protein was subjected to crystallization, which yielded hits that scatter X-rays to low resolution. Our findings have the potential to pave the way for subsequent drug discovery.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Protein expression and purification
Protein expression and purification 生物-生化研究方法
CiteScore
3.70
自引率
6.20%
发文量
120
审稿时长
32 days
期刊介绍: Protein Expression and Purification is an international journal providing a forum for the dissemination of new information on protein expression, extraction, purification, characterization, and/or applications using conventional biochemical and/or modern molecular biological approaches and methods, which are of broad interest to the field. The journal does not typically publish repetitive examples of protein expression and purification involving standard, well-established, methods. However, exceptions might include studies on important and/or difficult to express and/or purify proteins and/or studies that include extensive protein characterization, which provide new, previously unpublished information.
期刊最新文献
Isolation and crystallization of copper resistance protein B (CopB) from Acinetobacter baumannii Efficient purification and excitation energy transfer characterization of phycoerythrin 545 from Rhodomonas sp. Expression and purification of the intact bacterial ergothioneine transporter EgtU Editorial Board Recombinant human FOXJ1 protein binds DNA, forms higher-order oligomers, has gel-shifting domains and contains intrinsically disordered regions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1