{"title":"The generalized first-passage probability considering temporal correlation and its application in dynamic reliability analysis","authors":"Xian-Lin Yang , Ming-Ming Jia , Da-Gang Lu","doi":"10.1016/j.strusafe.2024.102547","DOIUrl":null,"url":null,"abstract":"<div><div>In the traditional up-crossing rate approaches, the absence of consideration for correlation among crossing events often results in significant inaccuracies, particularly in scenarios involving stochastic processes with high autocorrelation and low thresholds. To fundamentally address these issues and limitations, the probability density function of the first passage time represented by the high-dimensional joint probability density function was investigated, and the equiprobable joint Gaussian (E-PHIn) method is proposed to prevent the redundant counting of the same crossing event. The innovation of the developed method is that it accounts for the correlation among different time instances of the stochastic process and allows for direct integration to derive the first-passage probabilities. When dealing with stochastic processes with unknown marginal distributions, the method of moments was introduced, complementing the E-PHIn method. Meanwhile, corresponding dimensionality reduction strategies are offered to improve computational efficiency. Through theoretical analysis and case studies, the results indicate that the conditional up-crossing rate represents the probability density function of the first-passage time. The E-PHIn method effectively addresses the first-passage problem for stochastic processes with either known or unknown marginal probability density functions. It fills the gap in traditional up-crossing rate approaches within the domain of nonlinear dynamic reliability. For the example structures, the E-PHIn method demonstrates higher accuracy compared to traditional point-based PDEM. Compared to MCS, the E-PHIn method significantly improves analytical efficiency while maintaining high precision for low-probability failure events.</div></div>","PeriodicalId":21978,"journal":{"name":"Structural Safety","volume":"112 ","pages":"Article 102547"},"PeriodicalIF":5.7000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Structural Safety","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167473024001188","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0
Abstract
In the traditional up-crossing rate approaches, the absence of consideration for correlation among crossing events often results in significant inaccuracies, particularly in scenarios involving stochastic processes with high autocorrelation and low thresholds. To fundamentally address these issues and limitations, the probability density function of the first passage time represented by the high-dimensional joint probability density function was investigated, and the equiprobable joint Gaussian (E-PHIn) method is proposed to prevent the redundant counting of the same crossing event. The innovation of the developed method is that it accounts for the correlation among different time instances of the stochastic process and allows for direct integration to derive the first-passage probabilities. When dealing with stochastic processes with unknown marginal distributions, the method of moments was introduced, complementing the E-PHIn method. Meanwhile, corresponding dimensionality reduction strategies are offered to improve computational efficiency. Through theoretical analysis and case studies, the results indicate that the conditional up-crossing rate represents the probability density function of the first-passage time. The E-PHIn method effectively addresses the first-passage problem for stochastic processes with either known or unknown marginal probability density functions. It fills the gap in traditional up-crossing rate approaches within the domain of nonlinear dynamic reliability. For the example structures, the E-PHIn method demonstrates higher accuracy compared to traditional point-based PDEM. Compared to MCS, the E-PHIn method significantly improves analytical efficiency while maintaining high precision for low-probability failure events.
期刊介绍:
Structural Safety is an international journal devoted to integrated risk assessment for a wide range of constructed facilities such as buildings, bridges, earth structures, offshore facilities, dams, lifelines and nuclear structural systems. Its purpose is to foster communication about risk and reliability among technical disciplines involved in design and construction, and to enhance the use of risk management in the constructed environment