Lagrangian analysis of submesoscale flows from sparse data using Gaussian Process Regression for field reconstruction

IF 3.1 3区 地球科学 Q2 METEOROLOGY & ATMOSPHERIC SCIENCES Ocean Modelling Pub Date : 2024-11-13 DOI:10.1016/j.ocemod.2024.102458
H.M. Aravind , Tamay M. Özgökmen , Michael R. Allshouse
{"title":"Lagrangian analysis of submesoscale flows from sparse data using Gaussian Process Regression for field reconstruction","authors":"H.M. Aravind ,&nbsp;Tamay M. Özgökmen ,&nbsp;Michael R. Allshouse","doi":"10.1016/j.ocemod.2024.102458","DOIUrl":null,"url":null,"abstract":"<div><div>Lagrangian analyses of oceanic flows provide insight into the various transport pathways in the ocean. This analysis typically relies on a dense set of trajectories that can be computed using high-resolution velocity fields, which are often not available during field experiments. Instruments like drifters and floats are often employed to overcome the limitations imposed by satellite- and radar-based velocity fields, to understand the transport pathways in the ocean. However, the sparsity in available drifter-trajectory data proves prohibitive to obtaining a comprehensive map of the Lagrangian characteristics of the underlying flow. To circumvent these issues, we use Gaussian Process Regression (GPR) to obtain velocity fields from sparse drifter data to generate synthetic trajectories and subsequently estimate two Lagrangian metrics, FTLE and dilation rate. A detailed error analysis is performed for drifter clusters deployed within various dynamical regions in the analytic Bickley jet system. The uncertainties in velocity reconstruction obtained from the GPR method, averaged along particle trajectories, locate Lagrangian confidence regions that are applicable both to synthetic trajectories and the dilation rate field. A sensitivity analysis reveals the role played by factors such as the spatial sampling density and temporal resolution of the drifter data, as well as the effect of position uncertainty as a result of GPS inaccuracy. The method is then applied to the drifter data from the Lagrangian Submesoscale Experiment in 2016 to locate convergent filaments. The results present a marked improvement over direct estimation of area-averaged dilation rates using drifter clusters.</div></div>","PeriodicalId":19457,"journal":{"name":"Ocean Modelling","volume":"193 ","pages":"Article 102458"},"PeriodicalIF":3.1000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ocean Modelling","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1463500324001446","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Lagrangian analyses of oceanic flows provide insight into the various transport pathways in the ocean. This analysis typically relies on a dense set of trajectories that can be computed using high-resolution velocity fields, which are often not available during field experiments. Instruments like drifters and floats are often employed to overcome the limitations imposed by satellite- and radar-based velocity fields, to understand the transport pathways in the ocean. However, the sparsity in available drifter-trajectory data proves prohibitive to obtaining a comprehensive map of the Lagrangian characteristics of the underlying flow. To circumvent these issues, we use Gaussian Process Regression (GPR) to obtain velocity fields from sparse drifter data to generate synthetic trajectories and subsequently estimate two Lagrangian metrics, FTLE and dilation rate. A detailed error analysis is performed for drifter clusters deployed within various dynamical regions in the analytic Bickley jet system. The uncertainties in velocity reconstruction obtained from the GPR method, averaged along particle trajectories, locate Lagrangian confidence regions that are applicable both to synthetic trajectories and the dilation rate field. A sensitivity analysis reveals the role played by factors such as the spatial sampling density and temporal resolution of the drifter data, as well as the effect of position uncertainty as a result of GPS inaccuracy. The method is then applied to the drifter data from the Lagrangian Submesoscale Experiment in 2016 to locate convergent filaments. The results present a marked improvement over direct estimation of area-averaged dilation rates using drifter clusters.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Ocean Modelling
Ocean Modelling 地学-海洋学
CiteScore
5.50
自引率
9.40%
发文量
86
审稿时长
19.6 weeks
期刊介绍: The main objective of Ocean Modelling is to provide rapid communication between those interested in ocean modelling, whether through direct observation, or through analytical, numerical or laboratory models, and including interactions between physical and biogeochemical or biological phenomena. Because of the intimate links between ocean and atmosphere, involvement of scientists interested in influences of either medium on the other is welcome. The journal has a wide scope and includes ocean-atmosphere interaction in various forms as well as pure ocean results. In addition to primary peer-reviewed papers, the journal provides review papers, preliminary communications, and discussions.
期刊最新文献
On long-crested ocean rogue waves originating from localized amplitude and frequency modulations Upgrade of the Chilean Wave Atlas database Advancing sea level anomaly modeling in the black sea with LSTM Auto-Encoders: A novel approach Improving ecological modeling: Integrating CNOP-P and adjoint assimilation in a coupled ecological model Impact of phytoplankton, CDOM, and suspended sediments on the vertical attenuation of light, changing heat content and circulation on a continental shelf: A modelling study of the Great Barrier Reef
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1