Xiangwei Guo , Shibo Guo , Yanqi Li , Ming Li , Fuhong Dai
{"title":"Mechanical adjustment and prediction of metal-composite reconfigurable tubes","authors":"Xiangwei Guo , Shibo Guo , Yanqi Li , Ming Li , Fuhong Dai","doi":"10.1016/j.ijmecsci.2024.109855","DOIUrl":null,"url":null,"abstract":"<div><div>FML (Fiber metal laminate) is widely used in aerospace as an advanced composite material. Metal hybrid bistable composites are one type of FML structure. The hybrid bistable composite is not only deformable but also conductive. In this paper, based on a bistable metamaterial tube, it is proposed to control its shape through metal-composite layups. A theoretical prediction model with a metal slip effect is developed. The energy equation of the theoretical model was solved using the principle of minimum potential energy. The curvature variation rules of two configurations of composite tube with different metal layups and different initial curvatures are discussed. Moreover, the finite element model of the metal hybrid composite is established. Finally, the accuracy of the theoretical and finite element models was verified by experiments. The proposed metal slip model is accurate than the classical model. The effect of metal on the bistable tube was determined. The configuration of the bistable tube is controlled by layups without adding any weight. This plays an important role in deformable metamaterials and multi-functional morphing structure applications.</div></div>","PeriodicalId":56287,"journal":{"name":"International Journal of Mechanical Sciences","volume":"286 ","pages":"Article 109855"},"PeriodicalIF":7.1000,"publicationDate":"2024-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Mechanical Sciences","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0020740324008968","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
FML (Fiber metal laminate) is widely used in aerospace as an advanced composite material. Metal hybrid bistable composites are one type of FML structure. The hybrid bistable composite is not only deformable but also conductive. In this paper, based on a bistable metamaterial tube, it is proposed to control its shape through metal-composite layups. A theoretical prediction model with a metal slip effect is developed. The energy equation of the theoretical model was solved using the principle of minimum potential energy. The curvature variation rules of two configurations of composite tube with different metal layups and different initial curvatures are discussed. Moreover, the finite element model of the metal hybrid composite is established. Finally, the accuracy of the theoretical and finite element models was verified by experiments. The proposed metal slip model is accurate than the classical model. The effect of metal on the bistable tube was determined. The configuration of the bistable tube is controlled by layups without adding any weight. This plays an important role in deformable metamaterials and multi-functional morphing structure applications.
期刊介绍:
The International Journal of Mechanical Sciences (IJMS) serves as a global platform for the publication and dissemination of original research that contributes to a deeper scientific understanding of the fundamental disciplines within mechanical, civil, and material engineering.
The primary focus of IJMS is to showcase innovative and ground-breaking work that utilizes analytical and computational modeling techniques, such as Finite Element Method (FEM), Boundary Element Method (BEM), and mesh-free methods, among others. These modeling methods are applied to diverse fields including rigid-body mechanics (e.g., dynamics, vibration, stability), structural mechanics, metal forming, advanced materials (e.g., metals, composites, cellular, smart) behavior and applications, impact mechanics, strain localization, and other nonlinear effects (e.g., large deflections, plasticity, fracture).
Additionally, IJMS covers the realms of fluid mechanics (both external and internal flows), tribology, thermodynamics, and materials processing. These subjects collectively form the core of the journal's content.
In summary, IJMS provides a prestigious platform for researchers to present their original contributions, shedding light on analytical and computational modeling methods in various areas of mechanical engineering, as well as exploring the behavior and application of advanced materials, fluid mechanics, thermodynamics, and materials processing.