Zhaoshi Chen , Ge Wang , Muyuan Zhao , Peiyao Zhao , Runkang Qiu , Bei Fan , Aijun Hu , Liya Liu , Fengzhong Wang
{"title":"Effect of NaCl concentration on the interfacial and foaming properties of wheat aqueous phase protein","authors":"Zhaoshi Chen , Ge Wang , Muyuan Zhao , Peiyao Zhao , Runkang Qiu , Bei Fan , Aijun Hu , Liya Liu , Fengzhong Wang","doi":"10.1016/j.foodhyd.2024.110869","DOIUrl":null,"url":null,"abstract":"<div><div>In this study, the structure, foaming properties, and air-water interfacial behavior of wheat aqueous phase protein (WAP) with different NaCl concentrations were investigated. With the addition of NaCl, the particle size and the β-sheet content increased, indicating the formation of larger aggregates. In the FT-IR spectrum NaCl also increased the peak intensity for WAP, this peak often associated with C-O and C-N stretching vibrations, indicating that NaCl may induce conformational changes, such as protein unfolding. As NaCl concentration increased, the foam capacity of WAP increased from 106.25 ± 1.41% to 142.38 ± 15.73%, while native WAP exhibited higher foam stability. Interfacial adsorption kinetics revealed that NaCl favored WAP adsorption at the air-water interface. The interfacial viscoelasticity modulus of all samples increased over time, forming an interfacial layer primarily characterized by elastic behavior. Native WAP exhibited a stronger viscoelasticity modulus, forming a stable adsorption layer at the air-water interface, which contributed to enhanced foam stability. This study provides valuable insights into the regulation of WAP structure and foaming properties by salt ions, which may offer a new strategy for improving the interfacial properties of wheat-based food products.</div></div>","PeriodicalId":320,"journal":{"name":"Food Hydrocolloids","volume":"161 ","pages":"Article 110869"},"PeriodicalIF":11.0000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Hydrocolloids","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0268005X24011433","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
In this study, the structure, foaming properties, and air-water interfacial behavior of wheat aqueous phase protein (WAP) with different NaCl concentrations were investigated. With the addition of NaCl, the particle size and the β-sheet content increased, indicating the formation of larger aggregates. In the FT-IR spectrum NaCl also increased the peak intensity for WAP, this peak often associated with C-O and C-N stretching vibrations, indicating that NaCl may induce conformational changes, such as protein unfolding. As NaCl concentration increased, the foam capacity of WAP increased from 106.25 ± 1.41% to 142.38 ± 15.73%, while native WAP exhibited higher foam stability. Interfacial adsorption kinetics revealed that NaCl favored WAP adsorption at the air-water interface. The interfacial viscoelasticity modulus of all samples increased over time, forming an interfacial layer primarily characterized by elastic behavior. Native WAP exhibited a stronger viscoelasticity modulus, forming a stable adsorption layer at the air-water interface, which contributed to enhanced foam stability. This study provides valuable insights into the regulation of WAP structure and foaming properties by salt ions, which may offer a new strategy for improving the interfacial properties of wheat-based food products.
期刊介绍:
Food Hydrocolloids publishes original and innovative research focused on the characterization, functional properties, and applications of hydrocolloid materials used in food products. These hydrocolloids, defined as polysaccharides and proteins of commercial importance, are added to control aspects such as texture, stability, rheology, and sensory properties. The research's primary emphasis should be on the hydrocolloids themselves, with thorough descriptions of their source, nature, and physicochemical characteristics. Manuscripts are expected to clearly outline specific aims and objectives, include a fundamental discussion of research findings at the molecular level, and address the significance of the results. Studies on hydrocolloids in complex formulations should concentrate on their overall properties and mechanisms of action, while simple formulation development studies may not be considered for publication.
The main areas of interest are:
-Chemical and physicochemical characterisation
Thermal properties including glass transitions and conformational changes-
Rheological properties including viscosity, viscoelastic properties and gelation behaviour-
The influence on organoleptic properties-
Interfacial properties including stabilisation of dispersions, emulsions and foams-
Film forming properties with application to edible films and active packaging-
Encapsulation and controlled release of active compounds-
The influence on health including their role as dietary fibre-
Manipulation of hydrocolloid structure and functionality through chemical, biochemical and physical processes-
New hydrocolloids and hydrocolloid sources of commercial potential.
The Journal also publishes Review articles that provide an overview of the latest developments in topics of specific interest to researchers in this field of activity.