Insights into transglutaminase on structural and rheological properties of gels from adzuki bean protein pretreated by electric fields

IF 11 1区 农林科学 Q1 CHEMISTRY, APPLIED Food Hydrocolloids Pub Date : 2024-11-26 DOI:10.1016/j.foodhyd.2024.110885
Jie Yang, Wei Zhao, Yongxin Yu, Yiping Ren, Jian-Ya Qian
{"title":"Insights into transglutaminase on structural and rheological properties of gels from adzuki bean protein pretreated by electric fields","authors":"Jie Yang,&nbsp;Wei Zhao,&nbsp;Yongxin Yu,&nbsp;Yiping Ren,&nbsp;Jian-Ya Qian","doi":"10.1016/j.foodhyd.2024.110885","DOIUrl":null,"url":null,"abstract":"<div><div>The demand for protein is increasing as the global population continues to grow. The plant protein has been favored and plant-based food has become a research hotspot for healthy diet, environmental protection, animal ethics and other issues. Adzuki bean protein (ABP) is a quality source with complete amino acids, abundant essential amino acids and beanless flavour. ABP is rich in glutamine and lysine which are good substrates for transaminase (TGase) induced gelation. The pulsed electric field (PEF), alternating current EF (ACEF), direct current EF (DCEF) were applied to pretreat ABP aiming at improving the efficacy of TGase induced crosslinking. The results showed that the TGase decreased the free amino amount significantly and increased the molecular weight of ABP. The EF pretreatments significantly influenced the secondary and tertiary structures of ABP with a decrease in β-sheets, increase in random coils, β-turns, and α-helices, also decrease in fluorescence intensity with blueshift. The content of disulfide bond increased with the decrease of free sulfhydryl groups. The ionic bonds decreased and hydrophobic actions surpassed significantly hydrogen bonds. The hydrophobicity increased. The electric field intensity corresponded to variation of microstructure, texture and rheological behaviour of the ABP gel according to the type of the EF.</div></div>","PeriodicalId":320,"journal":{"name":"Food Hydrocolloids","volume":"161 ","pages":"Article 110885"},"PeriodicalIF":11.0000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Hydrocolloids","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0268005X24011597","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

The demand for protein is increasing as the global population continues to grow. The plant protein has been favored and plant-based food has become a research hotspot for healthy diet, environmental protection, animal ethics and other issues. Adzuki bean protein (ABP) is a quality source with complete amino acids, abundant essential amino acids and beanless flavour. ABP is rich in glutamine and lysine which are good substrates for transaminase (TGase) induced gelation. The pulsed electric field (PEF), alternating current EF (ACEF), direct current EF (DCEF) were applied to pretreat ABP aiming at improving the efficacy of TGase induced crosslinking. The results showed that the TGase decreased the free amino amount significantly and increased the molecular weight of ABP. The EF pretreatments significantly influenced the secondary and tertiary structures of ABP with a decrease in β-sheets, increase in random coils, β-turns, and α-helices, also decrease in fluorescence intensity with blueshift. The content of disulfide bond increased with the decrease of free sulfhydryl groups. The ionic bonds decreased and hydrophobic actions surpassed significantly hydrogen bonds. The hydrophobicity increased. The electric field intensity corresponded to variation of microstructure, texture and rheological behaviour of the ABP gel according to the type of the EF.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Food Hydrocolloids
Food Hydrocolloids 工程技术-食品科技
CiteScore
19.90
自引率
14.00%
发文量
871
审稿时长
37 days
期刊介绍: Food Hydrocolloids publishes original and innovative research focused on the characterization, functional properties, and applications of hydrocolloid materials used in food products. These hydrocolloids, defined as polysaccharides and proteins of commercial importance, are added to control aspects such as texture, stability, rheology, and sensory properties. The research's primary emphasis should be on the hydrocolloids themselves, with thorough descriptions of their source, nature, and physicochemical characteristics. Manuscripts are expected to clearly outline specific aims and objectives, include a fundamental discussion of research findings at the molecular level, and address the significance of the results. Studies on hydrocolloids in complex formulations should concentrate on their overall properties and mechanisms of action, while simple formulation development studies may not be considered for publication. The main areas of interest are: -Chemical and physicochemical characterisation Thermal properties including glass transitions and conformational changes- Rheological properties including viscosity, viscoelastic properties and gelation behaviour- The influence on organoleptic properties- Interfacial properties including stabilisation of dispersions, emulsions and foams- Film forming properties with application to edible films and active packaging- Encapsulation and controlled release of active compounds- The influence on health including their role as dietary fibre- Manipulation of hydrocolloid structure and functionality through chemical, biochemical and physical processes- New hydrocolloids and hydrocolloid sources of commercial potential. The Journal also publishes Review articles that provide an overview of the latest developments in topics of specific interest to researchers in this field of activity.
期刊最新文献
Pectin-Cellulose Nanofiber Composites: Biodegradable Materials for Modified Atmosphere Packaging. Effect of different soluble pectin in breadfruit on starch digestibility Dynamic changes in interfacial and emulsifying properties of soy protein during fibrillation Chemical composition, rheological properties and calcium-induced gelation mechanism of Premna microphylla Turcz polysaccharide Exploring the effect of sinapic acid on the structure, aggregation behavior and molecular interactions of gluten and its components
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1