James A. Kidder , Alain Grenier , Bradley J.A. Harvey , Christopher E. Beckett-Brown , M. Beth McClenaghan , Pierre Pelchat , Jing Zhang , Daniel Layton-Matthews , Frank Oliva
{"title":"Using UAVs to collect filtered water samples for mineral exploration: Will it take off?","authors":"James A. Kidder , Alain Grenier , Bradley J.A. Harvey , Christopher E. Beckett-Brown , M. Beth McClenaghan , Pierre Pelchat , Jing Zhang , Daniel Layton-Matthews , Frank Oliva","doi":"10.1016/j.gexplo.2024.107617","DOIUrl":null,"url":null,"abstract":"<div><div>The advent of unmanned aerial vehicle (UAV) assisted surface water sampling and ongoing technological advances in sampling and data acquisition, offers many opportunities to conduct high-quality hydrogeochemical surveys with low cost, high efficiency, and reduced human interactions. Hydrogeochemical mineral exploration is one area that could greatly benefit from a UAV sampling revolution, with survey sites often located in highly remote areas with limited existing infrastructure. Currently, a lack of point source filtration and complicated physiochemical data acquisition hinder mainstream UAV deployment in the context of hydrogeochemical studies. The aim of this paper is to provide guidance on effective UAV sampling methods and physiochemical data collection for use in surface water hydrogeochemical mineral exploration. To date, case study surveys have utilized sampling systems where sampled waters are filtered after collection or analyzed for ‘total’ (unfiltered) concentrations. This paper details a methodology for point-source filtration of water samples using a UAV system to recover filter sample aliquots for the determination of ‘dissolved’ (<0.45 μm) trace element concentrations and compares UAV methods to conventional sampling strategies. This study systematically compares the quality of analytical data collected from lakes, ponds, and rivers in the Long Lake area of southern Ontario, using conventional manual sampling (from a boat or canoe) and a series of UAV-based sampling methodologies. The waters sampled within the study area are highly meteoric and show evidence of solute input from water-rock interaction with local country rocks. The results of this study show that in general, conventional sampling methodologies are statistically comparable to samples collected using UAVs. However, there is some evidence of element variation related to lake stratification, with dissolved Cu concentrations higher in samples collected at depth compared to those from the surface. Similarly, samples filtered after collection typically have lower concentrations of Fe and Mn, potentially resulting from precipitation before filtration. An enclosed sampling system offered from peristaltic pumping with in-line filtration removes the potential for contamination from the surrounding environment and from the UAV itself.</div></div>","PeriodicalId":16336,"journal":{"name":"Journal of Geochemical Exploration","volume":"269 ","pages":"Article 107617"},"PeriodicalIF":3.4000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geochemical Exploration","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0375674224002334","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
The advent of unmanned aerial vehicle (UAV) assisted surface water sampling and ongoing technological advances in sampling and data acquisition, offers many opportunities to conduct high-quality hydrogeochemical surveys with low cost, high efficiency, and reduced human interactions. Hydrogeochemical mineral exploration is one area that could greatly benefit from a UAV sampling revolution, with survey sites often located in highly remote areas with limited existing infrastructure. Currently, a lack of point source filtration and complicated physiochemical data acquisition hinder mainstream UAV deployment in the context of hydrogeochemical studies. The aim of this paper is to provide guidance on effective UAV sampling methods and physiochemical data collection for use in surface water hydrogeochemical mineral exploration. To date, case study surveys have utilized sampling systems where sampled waters are filtered after collection or analyzed for ‘total’ (unfiltered) concentrations. This paper details a methodology for point-source filtration of water samples using a UAV system to recover filter sample aliquots for the determination of ‘dissolved’ (<0.45 μm) trace element concentrations and compares UAV methods to conventional sampling strategies. This study systematically compares the quality of analytical data collected from lakes, ponds, and rivers in the Long Lake area of southern Ontario, using conventional manual sampling (from a boat or canoe) and a series of UAV-based sampling methodologies. The waters sampled within the study area are highly meteoric and show evidence of solute input from water-rock interaction with local country rocks. The results of this study show that in general, conventional sampling methodologies are statistically comparable to samples collected using UAVs. However, there is some evidence of element variation related to lake stratification, with dissolved Cu concentrations higher in samples collected at depth compared to those from the surface. Similarly, samples filtered after collection typically have lower concentrations of Fe and Mn, potentially resulting from precipitation before filtration. An enclosed sampling system offered from peristaltic pumping with in-line filtration removes the potential for contamination from the surrounding environment and from the UAV itself.
期刊介绍:
Journal of Geochemical Exploration is mostly dedicated to publication of original studies in exploration and environmental geochemistry and related topics.
Contributions considered of prevalent interest for the journal include researches based on the application of innovative methods to:
define the genesis and the evolution of mineral deposits including transfer of elements in large-scale mineralized areas.
analyze complex systems at the boundaries between bio-geochemistry, metal transport and mineral accumulation.
evaluate effects of historical mining activities on the surface environment.
trace pollutant sources and define their fate and transport models in the near-surface and surface environments involving solid, fluid and aerial matrices.
assess and quantify natural and technogenic radioactivity in the environment.
determine geochemical anomalies and set baseline reference values using compositional data analysis, multivariate statistics and geo-spatial analysis.
assess the impacts of anthropogenic contamination on ecosystems and human health at local and regional scale to prioritize and classify risks through deterministic and stochastic approaches.
Papers dedicated to the presentation of newly developed methods in analytical geochemistry to be applied in the field or in laboratory are also within the topics of interest for the journal.