Quantifying Global Hydrological Sensitivity to CO2 Physiological and Radiative Forcings Under Large CO2 Increases

IF 7.3 1区 地球科学 Q1 ENVIRONMENTAL SCIENCES Earths Future Pub Date : 2024-11-27 DOI:10.1029/2023EF004246
Xuanze Zhang, Yongqiang Zhang, Ying-Ping Wang, Qiuhong Tang, Yunyun Ban, Chanyue Ren, Husi Letu, Jiancheng Shi, Changming Liu
{"title":"Quantifying Global Hydrological Sensitivity to CO2 Physiological and Radiative Forcings Under Large CO2 Increases","authors":"Xuanze Zhang,&nbsp;Yongqiang Zhang,&nbsp;Ying-Ping Wang,&nbsp;Qiuhong Tang,&nbsp;Yunyun Ban,&nbsp;Chanyue Ren,&nbsp;Husi Letu,&nbsp;Jiancheng Shi,&nbsp;Changming Liu","doi":"10.1029/2023EF004246","DOIUrl":null,"url":null,"abstract":"<p>Prediction of surface freshwater flux (precipitation or evaporation) in a CO<sub>2</sub>-enriched climate is highly uncertain, primarily depending on the hydrological responses to physiological and radiative forcings of CO<sub>2</sub> increase. Using the 1pctCO<sub>2</sub> (a 1% per year CO<sub>2</sub> increase scenario) experiments of 12 CMIP6 models, we first decouple and quantify the magnitude of global hydrological sensitivity to CO<sub>2</sub> physiological and radiative forcings. Results show that the direct global hydrological sensitivity (for land plus ocean precipitation) to CO<sub>2</sub> increase only is −0.09 ± 0.07% (100 ppm) <sup>−1</sup> and to CO<sub>2</sub>-induced warming alone is 1.54 ± 0.24% K<sup>−1</sup>. The latter is about 10% larger than the global apparent hydrological sensitivity (i.e., including all effects, not only direct responses to warming, <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>η</mi>\n <mi>a</mi>\n </msub>\n </mrow>\n <annotation> ${\\eta }_{a}$</annotation>\n </semantics></math> = 1.39 ± 0.22% K<sup>−1</sup>). These hydrological sensitivities are relatively stable over transient 2× to 4 × CO<sub>2</sub> scenario. The intensification of the global water cycle are dominated by the CO<sub>2</sub> radiative effect (79 ± 12%) with a smaller positive contribution from the interaction between the two effects (6 ± 12%), but are reduced by the CO<sub>2</sub> physiological effect (−10 ± 8%). This finding underlines the importance of CO<sub>2</sub> vegetation physiology in global water cycle projections under a CO<sub>2</sub>-enriched and warming climate.</p>","PeriodicalId":48748,"journal":{"name":"Earths Future","volume":"12 12","pages":""},"PeriodicalIF":7.3000,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2023EF004246","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earths Future","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2023EF004246","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Prediction of surface freshwater flux (precipitation or evaporation) in a CO2-enriched climate is highly uncertain, primarily depending on the hydrological responses to physiological and radiative forcings of CO2 increase. Using the 1pctCO2 (a 1% per year CO2 increase scenario) experiments of 12 CMIP6 models, we first decouple and quantify the magnitude of global hydrological sensitivity to CO2 physiological and radiative forcings. Results show that the direct global hydrological sensitivity (for land plus ocean precipitation) to CO2 increase only is −0.09 ± 0.07% (100 ppm) −1 and to CO2-induced warming alone is 1.54 ± 0.24% K−1. The latter is about 10% larger than the global apparent hydrological sensitivity (i.e., including all effects, not only direct responses to warming, η a ${\eta }_{a}$  = 1.39 ± 0.22% K−1). These hydrological sensitivities are relatively stable over transient 2× to 4 × CO2 scenario. The intensification of the global water cycle are dominated by the CO2 radiative effect (79 ± 12%) with a smaller positive contribution from the interaction between the two effects (6 ± 12%), but are reduced by the CO2 physiological effect (−10 ± 8%). This finding underlines the importance of CO2 vegetation physiology in global water cycle projections under a CO2-enriched and warming climate.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
全球水文对CO2生理强迫和辐射强迫的敏感性定量研究
在富含二氧化碳的气候中,对地表淡水通量(降水或蒸发)的预测是高度不确定的,主要取决于对二氧化碳增加的生理和辐射强迫的水文响应。利用12个CMIP6模式的1pctCO2 (CO2每年增加1%的情景)实验,我们首先解耦并量化了全球水文对CO2生理强迫和辐射强迫的敏感性。结果表明,全球水文(陆地和海洋降水)对CO2增加的直接敏感性为- 0.09±0.07% (100 ppm)−1,对CO2引起的单独变暖的直接敏感性为1.54±0.24% K−1。后者比全球表观水文敏感性(即,包括所有影响,不仅是对变暖的直接响应,η a ${\eta}_{a}$ = 1.39±0.22% K−1)大10%左右。这些水文敏感性在2×至4 × CO2瞬态情景下相对稳定。全球水循环的强化以CO2辐射效应(79±12%)为主,二者相互作用的正贡献较小(6±12%),但CO2生理效应(−10±8%)减弱了全球水循环的强化。这一发现强调了CO2植被生理学在CO2富集和变暖气候下全球水循环预测中的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Earths Future
Earths Future ENVIRONMENTAL SCIENCESGEOSCIENCES, MULTIDI-GEOSCIENCES, MULTIDISCIPLINARY
CiteScore
11.00
自引率
7.30%
发文量
260
审稿时长
16 weeks
期刊介绍: Earth’s Future: A transdisciplinary open access journal, Earth’s Future focuses on the state of the Earth and the prediction of the planet’s future. By publishing peer-reviewed articles as well as editorials, essays, reviews, and commentaries, this journal will be the preeminent scholarly resource on the Anthropocene. It will also help assess the risks and opportunities associated with environmental changes and challenges.
期刊最新文献
Quantifying Biodiversity's Present and Future: Current Potentials and SSP-RCP-Driven Land Use Impacts Is Reservoir Storage Effectively Utilized in the Southeastern US? A Regional Assessment to Improve Water Supply Availability Considering Potential Storage and Flood Scenarios Early Career Perspectives to Broaden the Scope of Critical Zone Science Global Land-Water Competition and Synergy Between Solar Energy and Agriculture An Integrated Global-To-Regional Scale Workflow for Simulating Climate Change Impacts on Marine Ecosystems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1