Comparison of localization and release of multivesicular bodies and secretory granules in islet cells: Dysregulation during type-2 diabetes

Priyadarshini Veerabhadraswamy, Kiran Lata, Sristi Dey, Prajakta Belekar, Lakshmi Kothegala, Vidya Mangala Prasad, Nikhil R. Gandasi
{"title":"Comparison of localization and release of multivesicular bodies and secretory granules in islet cells: Dysregulation during type-2 diabetes","authors":"Priyadarshini Veerabhadraswamy,&nbsp;Kiran Lata,&nbsp;Sristi Dey,&nbsp;Prajakta Belekar,&nbsp;Lakshmi Kothegala,&nbsp;Vidya Mangala Prasad,&nbsp;Nikhil R. Gandasi","doi":"10.1002/jex2.70014","DOIUrl":null,"url":null,"abstract":"<p>Multivesicular bodies (MVBs) are vesicles of endosomal origin containing intraluminal vesicles, which upon fusion with plasma membrane, secrete exosomes. They play a significant role in the physiology and pathology of type-2 diabetes (T2D) due to disrupted intercellular communication. The role of MVBs and their influence on insulin secretory granules (ISGs) of β-cells or their characterization is yet to be uncovered. In our study, we compared MVBs to largely well-characterized ISGs in β-cells. This study compares the density, localization, and exocytosis of CD63+ compartments (CD63+c) with NPY labelled ISGs (NISGs) in β-cells. For this, tetraspanin CD63 was exploited to majorly label MVBs in β-cells. These labels preserve the structural integrity of labelled compartments and mostly do not localize with other endo-lysosomal compartments. This study showed that the β-cells have a significantly higher density of NISGs than CD63+c. CD63+c and NISGs are spatially localized apart within β-cells. The proteins that localize with CD63+c are different from the ones that localize with NISGs. Exocytosis of NISGs occurs at the periphery of the β-cells and takes significantly less time when compared to the release of CD63+c, which is non-peripheral and takes a longer duration. Mechanistically, the availability of CD63+c for exocytosis was assessed and found that an equilibrium is maintained between docking and undocking states at the plasma membrane. Although there are a high number of short-term residing, visiting CD63+c at the plasma membrane, the availability of CD63+c for exocytosis is maintained due to docking and undocking states. Further, a significant reduction in the density of NISGs and CD63+c was observed in β-cells isolated from T2D donors compared to healthy counterparts. Studying the effect of MVBs on insulin secretion in physiological and T2D conditions has huge potential. This study provides a strong basis to open new avenues for such future studies.</p>","PeriodicalId":73747,"journal":{"name":"Journal of extracellular biology","volume":"3 11","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jex2.70014","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of extracellular biology","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jex2.70014","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Multivesicular bodies (MVBs) are vesicles of endosomal origin containing intraluminal vesicles, which upon fusion with plasma membrane, secrete exosomes. They play a significant role in the physiology and pathology of type-2 diabetes (T2D) due to disrupted intercellular communication. The role of MVBs and their influence on insulin secretory granules (ISGs) of β-cells or their characterization is yet to be uncovered. In our study, we compared MVBs to largely well-characterized ISGs in β-cells. This study compares the density, localization, and exocytosis of CD63+ compartments (CD63+c) with NPY labelled ISGs (NISGs) in β-cells. For this, tetraspanin CD63 was exploited to majorly label MVBs in β-cells. These labels preserve the structural integrity of labelled compartments and mostly do not localize with other endo-lysosomal compartments. This study showed that the β-cells have a significantly higher density of NISGs than CD63+c. CD63+c and NISGs are spatially localized apart within β-cells. The proteins that localize with CD63+c are different from the ones that localize with NISGs. Exocytosis of NISGs occurs at the periphery of the β-cells and takes significantly less time when compared to the release of CD63+c, which is non-peripheral and takes a longer duration. Mechanistically, the availability of CD63+c for exocytosis was assessed and found that an equilibrium is maintained between docking and undocking states at the plasma membrane. Although there are a high number of short-term residing, visiting CD63+c at the plasma membrane, the availability of CD63+c for exocytosis is maintained due to docking and undocking states. Further, a significant reduction in the density of NISGs and CD63+c was observed in β-cells isolated from T2D donors compared to healthy counterparts. Studying the effect of MVBs on insulin secretion in physiological and T2D conditions has huge potential. This study provides a strong basis to open new avenues for such future studies.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Mechanistic insight into human milk extracellular vesicle-intestinal barrier interactions. Quantitative fluorescent nanoparticle tracking analysis and nano-flow cytometry enable advanced characterization of single extracellular vesicles. Correction to Size matters: Biomolecular compositions of small and large extracellular vesicles in the urine of glioblastoma patients Monitoring concentration and lipid signature of plasma extracellular vesicles from HR+ metastatic breast cancer patients under CDK4/6 inhibitors treatment Characterization of Spirulina-derived extracellular vesicles and their potential as a vaccine adjuvant
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1