{"title":"Advanced AI-Driven Prediction of Pregnancy-Related Adverse Drug Reactions.","authors":"Jinfu Peng, Li Fu, Guoping Yang, Dongshen Cao","doi":"10.1021/acs.jcim.4c01657","DOIUrl":null,"url":null,"abstract":"<p><p>Ensuring drug safety during pregnancy is critical due to the potential risks to both the mother and fetus. However, the exclusion of pregnant women from clinical trials complicates the assessment of adverse drug reactions (ADRs) in this population. This study aimed to develop and validate risk prediction models for pregnancy-related ADRs of drugs using advanced Machine Learning (ML) and Deep Learning (DL) techniques, leveraging real-world data from the FDA Adverse Event Reporting System. We explored three methods─Information Component, Reporting Odds Ratio, and 95% confidence interval of ROR─for classifying drugs into high-risk and low-risk categories. DL models, including Directed Message Passing Neural Networks (DMPNN), Graph Neural Networks, and Graph Convolutional Networks, were developed and compared to traditional ML models like Random Forest, Support Vector Machines, and XGBoost. Among these, the DMPNN model, which integrated molecular graph information and molecular descriptors, exhibited the highest predictive performance, particularly at the preferred term level. The model was validated against external data sets from SIDER and DailyMed, demonstrating strong generalizability. Additionally, the model was applied to assess the risk of 22 oral hypoglycemic drugs, and potential substructure alerts for pregnancy-related ADRs were identified. These findings suggest that the DMPNN model is a valuable tool for predicting ADRs in pregnant women, offering significant advancement in drug safety assessment and providing crucial insights for safer medication use during pregnancy.</p>","PeriodicalId":44,"journal":{"name":"Journal of Chemical Information and Modeling ","volume":" ","pages":""},"PeriodicalIF":5.6000,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Information and Modeling ","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.jcim.4c01657","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
Ensuring drug safety during pregnancy is critical due to the potential risks to both the mother and fetus. However, the exclusion of pregnant women from clinical trials complicates the assessment of adverse drug reactions (ADRs) in this population. This study aimed to develop and validate risk prediction models for pregnancy-related ADRs of drugs using advanced Machine Learning (ML) and Deep Learning (DL) techniques, leveraging real-world data from the FDA Adverse Event Reporting System. We explored three methods─Information Component, Reporting Odds Ratio, and 95% confidence interval of ROR─for classifying drugs into high-risk and low-risk categories. DL models, including Directed Message Passing Neural Networks (DMPNN), Graph Neural Networks, and Graph Convolutional Networks, were developed and compared to traditional ML models like Random Forest, Support Vector Machines, and XGBoost. Among these, the DMPNN model, which integrated molecular graph information and molecular descriptors, exhibited the highest predictive performance, particularly at the preferred term level. The model was validated against external data sets from SIDER and DailyMed, demonstrating strong generalizability. Additionally, the model was applied to assess the risk of 22 oral hypoglycemic drugs, and potential substructure alerts for pregnancy-related ADRs were identified. These findings suggest that the DMPNN model is a valuable tool for predicting ADRs in pregnant women, offering significant advancement in drug safety assessment and providing crucial insights for safer medication use during pregnancy.
期刊介绍:
The Journal of Chemical Information and Modeling publishes papers reporting new methodology and/or important applications in the fields of chemical informatics and molecular modeling. Specific topics include the representation and computer-based searching of chemical databases, molecular modeling, computer-aided molecular design of new materials, catalysts, or ligands, development of new computational methods or efficient algorithms for chemical software, and biopharmaceutical chemistry including analyses of biological activity and other issues related to drug discovery.
Astute chemists, computer scientists, and information specialists look to this monthly’s insightful research studies, programming innovations, and software reviews to keep current with advances in this integral, multidisciplinary field.
As a subscriber you’ll stay abreast of database search systems, use of graph theory in chemical problems, substructure search systems, pattern recognition and clustering, analysis of chemical and physical data, molecular modeling, graphics and natural language interfaces, bibliometric and citation analysis, and synthesis design and reactions databases.