Identification of serum N-glycans signatures in three major gastrointestinal cancers by high-throughput N-glycome profiling.

IF 2.8 3区 医学 Q2 BIOCHEMICAL RESEARCH METHODS Clinical proteomics Pub Date : 2024-11-28 DOI:10.1186/s12014-024-09516-2
Si Liu, Jianmin Huang, Yuanyuan Liu, Jiajing Lin, Haobo Zhang, Liming Cheng, Weimin Ye, Xin Liu
{"title":"Identification of serum N-glycans signatures in three major gastrointestinal cancers by high-throughput N-glycome profiling.","authors":"Si Liu, Jianmin Huang, Yuanyuan Liu, Jiajing Lin, Haobo Zhang, Liming Cheng, Weimin Ye, Xin Liu","doi":"10.1186/s12014-024-09516-2","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Alternative N-glycosylation of serum proteins has been observed in colorectal cancer (CRC), esophageal squamous cell carcinoma (ESCC) and gastric cancer (GC), while comparative study among those three cancers has not been reported before. We aimed to identify serum N-glycans signatures and introduce a discriminative model across the gastrointestinal cancers.</p><p><strong>Methods: </strong>The study population was initially screened according to the exclusion criteria process. Serum N-glycans profiling was characterized by a high-throughput assay based on matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS). Diagnostic model was built by random forest, and unsupervised machine learning was performed to illustrate the differentiation between the three major gastrointestinal (GI) cancers.</p><p><strong>Results: </strong>We have found that three major gastrointestinal cancers strongly associated with significantly decreased mannosylation and mono-galactosylation, as well as increased sialylation of serum glycoproteins. A highly accurate discriminative power (> 0.90) for those gastrointestinal cancers was obtained with serum N-glycome based predictive model. Additionally, serum N-glycome profile exhibited distinct distributions across GI cancers, and several altered N-glycans were hyper-regulated in each specific disease.</p><p><strong>Conclusions: </strong>Serum N-glycome profile was differentially expressed in three major gastrointestinal cancers, providing a new clinical tool for cancer diagnosis and throwing a light upon the disease-specific molecular signatures.</p>","PeriodicalId":10468,"journal":{"name":"Clinical proteomics","volume":"21 1","pages":"64"},"PeriodicalIF":2.8000,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical proteomics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12014-024-09516-2","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Alternative N-glycosylation of serum proteins has been observed in colorectal cancer (CRC), esophageal squamous cell carcinoma (ESCC) and gastric cancer (GC), while comparative study among those three cancers has not been reported before. We aimed to identify serum N-glycans signatures and introduce a discriminative model across the gastrointestinal cancers.

Methods: The study population was initially screened according to the exclusion criteria process. Serum N-glycans profiling was characterized by a high-throughput assay based on matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS). Diagnostic model was built by random forest, and unsupervised machine learning was performed to illustrate the differentiation between the three major gastrointestinal (GI) cancers.

Results: We have found that three major gastrointestinal cancers strongly associated with significantly decreased mannosylation and mono-galactosylation, as well as increased sialylation of serum glycoproteins. A highly accurate discriminative power (> 0.90) for those gastrointestinal cancers was obtained with serum N-glycome based predictive model. Additionally, serum N-glycome profile exhibited distinct distributions across GI cancers, and several altered N-glycans were hyper-regulated in each specific disease.

Conclusions: Serum N-glycome profile was differentially expressed in three major gastrointestinal cancers, providing a new clinical tool for cancer diagnosis and throwing a light upon the disease-specific molecular signatures.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Clinical proteomics
Clinical proteomics BIOCHEMICAL RESEARCH METHODS-
CiteScore
5.80
自引率
2.60%
发文量
37
审稿时长
17 weeks
期刊介绍: Clinical Proteomics encompasses all aspects of translational proteomics. Special emphasis will be placed on the application of proteomic technology to all aspects of clinical research and molecular medicine. The journal is committed to rapid scientific review and timely publication of submitted manuscripts.
期刊最新文献
Comparative proteomic analysis of human vitreous in rhegmatogenous retinal detachment and diabetic retinopathy reveals a common pathway and potential therapeutic target. Identification of serum N-glycans signatures in three major gastrointestinal cancers by high-throughput N-glycome profiling. Changes in amino acid concentrations and the gut microbiota composition are implicated in the mucosal healing of ulcerative colitis and can be used as noninvasive diagnostic biomarkers. Serum proteomics for the identification of biomarkers to flag predilection of COVID19 patients to various organ morbidities. SPOT: spatial proteomics through on-site tissue-protein-labeling.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1