"UDE DIATOMS in the Wild 2024": a new image dataset of freshwater diatoms for training deep learning models.

IF 11.8 2区 生物学 Q1 MULTIDISCIPLINARY SCIENCES GigaScience Pub Date : 2024-01-02 DOI:10.1093/gigascience/giae087
Aishwarya Venkataramanan, Michael Kloster, Andrea Burfeid-Castellanos, Mimoza Dani, Ntambwe A S Mayombo, Danijela Vidakovic, Daniel Langenkämper, Mingkun Tan, Cedric Pradalier, Tim Nattkemper, Martin Laviale, Bánk Beszteri
{"title":"\"UDE DIATOMS in the Wild 2024\": a new image dataset of freshwater diatoms for training deep learning models.","authors":"Aishwarya Venkataramanan, Michael Kloster, Andrea Burfeid-Castellanos, Mimoza Dani, Ntambwe A S Mayombo, Danijela Vidakovic, Daniel Langenkämper, Mingkun Tan, Cedric Pradalier, Tim Nattkemper, Martin Laviale, Bánk Beszteri","doi":"10.1093/gigascience/giae087","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Diatoms are microalgae with finely ornamented microscopic silica shells. Their taxonomic identification by light microscopy is routinely used as part of community ecological research as well as ecological status assessment of aquatic ecosystems, and a need for digitalization of these methods has long been recognized. Alongside their high taxonomic and morphological diversity, several other factors make diatoms highly challenging for deep learning-based identification using light microscopy images. These include (i) an unusually high intraclass variability combined with small between-class differences, (ii) a rather different visual appearance of specimens depending on their orientation on the microscope slide, and (iii) the limited availability of diatom experts for accurate taxonomic annotation.</p><p><strong>Findings: </strong>We present the largest diatom image dataset thus far, aimed at facilitating the application and benchmarking of innovative deep learning methods to the diatom identification problem on realistic research data, \"UDE DIATOMS in the Wild 2024.\" The dataset contains 83,570 images of 611 diatom taxa, 101 of which are represented by at least 100 examples and 144 by at least 50 examples each. We showcase this dataset in 2 innovative analyses that address individual aspects of the above challenges using subclustering to deal with visually heterogeneous classes, out-of-distribution sample detection, and semi-supervised learning.</p><p><strong>Conclusions: </strong>The problem of image-based identification of diatoms is both important for environmental research and challenging from the machine learning perspective. By making available the so far largest image dataset, accompanied by innovative analyses, this contribution will facilitate addressing these points by the scientific community.</p>","PeriodicalId":12581,"journal":{"name":"GigaScience","volume":"13 ","pages":""},"PeriodicalIF":11.8000,"publicationDate":"2024-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11604061/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"GigaScience","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/gigascience/giae087","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Diatoms are microalgae with finely ornamented microscopic silica shells. Their taxonomic identification by light microscopy is routinely used as part of community ecological research as well as ecological status assessment of aquatic ecosystems, and a need for digitalization of these methods has long been recognized. Alongside their high taxonomic and morphological diversity, several other factors make diatoms highly challenging for deep learning-based identification using light microscopy images. These include (i) an unusually high intraclass variability combined with small between-class differences, (ii) a rather different visual appearance of specimens depending on their orientation on the microscope slide, and (iii) the limited availability of diatom experts for accurate taxonomic annotation.

Findings: We present the largest diatom image dataset thus far, aimed at facilitating the application and benchmarking of innovative deep learning methods to the diatom identification problem on realistic research data, "UDE DIATOMS in the Wild 2024." The dataset contains 83,570 images of 611 diatom taxa, 101 of which are represented by at least 100 examples and 144 by at least 50 examples each. We showcase this dataset in 2 innovative analyses that address individual aspects of the above challenges using subclustering to deal with visually heterogeneous classes, out-of-distribution sample detection, and semi-supervised learning.

Conclusions: The problem of image-based identification of diatoms is both important for environmental research and challenging from the machine learning perspective. By making available the so far largest image dataset, accompanied by innovative analyses, this contribution will facilitate addressing these points by the scientific community.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
“野外硅藻2024”:用于训练深度学习模型的淡水硅藻的新图像数据集。
背景:硅藻是一种微藻,具有精细装饰的微观二氧化硅外壳。它们的光学显微镜分类鉴定通常被用作群落生态学研究和水生生态系统生态状况评估的一部分,并且这些方法的数字化需求早已被认识到。除了高度的分类和形态多样性外,其他几个因素使硅藻在使用光学显微镜图像进行基于深度学习的识别时极具挑战性。这些包括:(i)异常高的类内变异性结合了小的类间差异,(ii)根据标本在显微镜载玻片上的方向不同,标本的视觉外观相当不同,以及(iii)硅藻专家进行准确分类注释的有限可用性。研究结果:我们提供了迄今为止最大的硅藻图像数据集,旨在促进创新深度学习方法在现实研究数据硅藻识别问题上的应用和基准测试,“野外硅藻2024”。该数据集包含611个硅藻分类的83570张图像,其中101张至少有100个样本,144张每个至少有50个样本。我们在两个创新分析中展示了这个数据集,这些分析使用子聚类来处理视觉异构类、分布外样本检测和半监督学习,解决了上述挑战的各个方面。结论:基于图像的硅藻识别问题对环境研究具有重要意义,对机器学习具有挑战性。通过提供迄今为止最大的图像数据集,以及创新的分析,这一贡献将有助于科学界解决这些问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
GigaScience
GigaScience MULTIDISCIPLINARY SCIENCES-
CiteScore
15.50
自引率
1.10%
发文量
119
审稿时长
1 weeks
期刊介绍: GigaScience seeks to transform data dissemination and utilization in the life and biomedical sciences. As an online open-access open-data journal, it specializes in publishing "big-data" studies encompassing various fields. Its scope includes not only "omic" type data and the fields of high-throughput biology currently serviced by large public repositories, but also the growing range of more difficult-to-access data, such as imaging, neuroscience, ecology, cohort data, systems biology and other new types of large-scale shareable data.
期刊最新文献
Knowledge graph-based thought: a knowledge graph-enhanced LLM framework for pan-cancer question answering. Mutation impact on mRNA versus protein expression across human cancers. Telomere-to-telomere genome and resequencing of 254 individuals reveal evolution, genomic footprints in Asian icefish, Protosalanx chinensis. An ecosystem for producing and sharing metadata within the web of FAIR Data. Chromosome-level echidna genome illuminates evolution of multiple sex chromosome system in monotremes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1