Drone-Based Digital Phenotyping to Evaluating Relative Maturity, Stand Count, and Plant Height in Dry Beans (Phaseolus vulgaris L.).

IF 7.6 1区 农林科学 Q1 AGRONOMY Plant Phenomics Pub Date : 2024-11-28 eCollection Date: 2024-01-01 DOI:10.34133/plantphenomics.0278
Leonardo Volpato, Evan M Wright, Francisco E Gomez
{"title":"Drone-Based Digital Phenotyping to Evaluating Relative Maturity, Stand Count, and Plant Height in Dry Beans (<i>Phaseolus vulgaris</i> L.).","authors":"Leonardo Volpato, Evan M Wright, Francisco E Gomez","doi":"10.34133/plantphenomics.0278","DOIUrl":null,"url":null,"abstract":"<p><p>Substantial effort has been made in manually tracking plant maturity and to measure early-stage plant density and crop height in experimental fields. In this study, RGB drone imagery and deep learning (DL) approaches are explored to measure relative maturity (RM), stand count (SC), and plant height (PH), potentially offering higher throughput, accuracy, and cost-effectiveness than traditional methods. A time series of drone images was utilized to estimate dry bean RM employing a hybrid convolutional neural network (CNN) and long short-term memory (LSTM) model. For early-stage SC assessment, Faster RCNN object detection algorithm was evaluated. Flight frequencies, image resolution, and data augmentation techniques were investigated to enhance DL model performance. PH was obtained using a quantile method from digital surface model (DSM) and point cloud (PC) data sources. The CNN-LSTM model showed high accuracy in RM prediction across various conditions, outperforming traditional image preprocessing approaches. The inclusion of growing degree days (GDD) data improved the model's performance under specific environmental stresses. The Faster R-CNN model effectively identified early-stage bean plants, demonstrating superior accuracy over traditional methods and consistency across different flight altitudes. For PH estimation, moderate correlations with ground-truth data were observed across both datasets analyzed. The choice between PC and DSM source data may depend on specific environmental and flight conditions. Overall, the CNN-LSTM and Faster R-CNN models proved more effective than conventional techniques in quantifying RM and SC. The subtraction method proposed for estimating PH without accurate ground elevation data yielded results comparable to the difference-based method. Additionally, the pipeline and open-source software developed hold potential to significantly benefit the phenotyping community.</p>","PeriodicalId":20318,"journal":{"name":"Plant Phenomics","volume":"6 ","pages":"0278"},"PeriodicalIF":7.6000,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11602537/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Phenomics","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.34133/plantphenomics.0278","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0

Abstract

Substantial effort has been made in manually tracking plant maturity and to measure early-stage plant density and crop height in experimental fields. In this study, RGB drone imagery and deep learning (DL) approaches are explored to measure relative maturity (RM), stand count (SC), and plant height (PH), potentially offering higher throughput, accuracy, and cost-effectiveness than traditional methods. A time series of drone images was utilized to estimate dry bean RM employing a hybrid convolutional neural network (CNN) and long short-term memory (LSTM) model. For early-stage SC assessment, Faster RCNN object detection algorithm was evaluated. Flight frequencies, image resolution, and data augmentation techniques were investigated to enhance DL model performance. PH was obtained using a quantile method from digital surface model (DSM) and point cloud (PC) data sources. The CNN-LSTM model showed high accuracy in RM prediction across various conditions, outperforming traditional image preprocessing approaches. The inclusion of growing degree days (GDD) data improved the model's performance under specific environmental stresses. The Faster R-CNN model effectively identified early-stage bean plants, demonstrating superior accuracy over traditional methods and consistency across different flight altitudes. For PH estimation, moderate correlations with ground-truth data were observed across both datasets analyzed. The choice between PC and DSM source data may depend on specific environmental and flight conditions. Overall, the CNN-LSTM and Faster R-CNN models proved more effective than conventional techniques in quantifying RM and SC. The subtraction method proposed for estimating PH without accurate ground elevation data yielded results comparable to the difference-based method. Additionally, the pipeline and open-source software developed hold potential to significantly benefit the phenotyping community.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Plant Phenomics
Plant Phenomics Multiple-
CiteScore
8.60
自引率
9.20%
发文量
26
审稿时长
14 weeks
期刊介绍: Plant Phenomics is an Open Access journal published in affiliation with the State Key Laboratory of Crop Genetics & Germplasm Enhancement, Nanjing Agricultural University (NAU) and published by the American Association for the Advancement of Science (AAAS). Like all partners participating in the Science Partner Journal program, Plant Phenomics is editorially independent from the Science family of journals. The mission of Plant Phenomics is to publish novel research that will advance all aspects of plant phenotyping from the cell to the plant population levels using innovative combinations of sensor systems and data analytics. Plant Phenomics aims also to connect phenomics to other science domains, such as genomics, genetics, physiology, molecular biology, bioinformatics, statistics, mathematics, and computer sciences. Plant Phenomics should thus contribute to advance plant sciences and agriculture/forestry/horticulture by addressing key scientific challenges in the area of plant phenomics. The scope of the journal covers the latest technologies in plant phenotyping for data acquisition, data management, data interpretation, modeling, and their practical applications for crop cultivation, plant breeding, forestry, horticulture, ecology, and other plant-related domains.
期刊最新文献
Drone-Based Digital Phenotyping to Evaluating Relative Maturity, Stand Count, and Plant Height in Dry Beans (Phaseolus vulgaris L.). Seasonal Fluctuations and Vertical Heterogeneity of Biochemical-Structural Parameters in Wetland Emergent Aquatic Vegetation. PlanText: Gradually Masked Guidance to Align Image Phenotypes with Trait Descriptions for Plant Disease Texts. Multi-Scale Attention Network for Vertical Seed Distribution in Soybean Breeding Fields. Counting Canola: Toward Generalizable Aerial Plant Detection Models.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1