Leonardo Volpato, Evan M Wright, Francisco E Gomez
{"title":"Drone-Based Digital Phenotyping to Evaluating Relative Maturity, Stand Count, and Plant Height in Dry Beans (<i>Phaseolus vulgaris</i> L.).","authors":"Leonardo Volpato, Evan M Wright, Francisco E Gomez","doi":"10.34133/plantphenomics.0278","DOIUrl":null,"url":null,"abstract":"<p><p>Substantial effort has been made in manually tracking plant maturity and to measure early-stage plant density and crop height in experimental fields. In this study, RGB drone imagery and deep learning (DL) approaches are explored to measure relative maturity (RM), stand count (SC), and plant height (PH), potentially offering higher throughput, accuracy, and cost-effectiveness than traditional methods. A time series of drone images was utilized to estimate dry bean RM employing a hybrid convolutional neural network (CNN) and long short-term memory (LSTM) model. For early-stage SC assessment, Faster RCNN object detection algorithm was evaluated. Flight frequencies, image resolution, and data augmentation techniques were investigated to enhance DL model performance. PH was obtained using a quantile method from digital surface model (DSM) and point cloud (PC) data sources. The CNN-LSTM model showed high accuracy in RM prediction across various conditions, outperforming traditional image preprocessing approaches. The inclusion of growing degree days (GDD) data improved the model's performance under specific environmental stresses. The Faster R-CNN model effectively identified early-stage bean plants, demonstrating superior accuracy over traditional methods and consistency across different flight altitudes. For PH estimation, moderate correlations with ground-truth data were observed across both datasets analyzed. The choice between PC and DSM source data may depend on specific environmental and flight conditions. Overall, the CNN-LSTM and Faster R-CNN models proved more effective than conventional techniques in quantifying RM and SC. The subtraction method proposed for estimating PH without accurate ground elevation data yielded results comparable to the difference-based method. Additionally, the pipeline and open-source software developed hold potential to significantly benefit the phenotyping community.</p>","PeriodicalId":20318,"journal":{"name":"Plant Phenomics","volume":"6 ","pages":"0278"},"PeriodicalIF":7.6000,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11602537/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Phenomics","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.34133/plantphenomics.0278","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0
Abstract
Substantial effort has been made in manually tracking plant maturity and to measure early-stage plant density and crop height in experimental fields. In this study, RGB drone imagery and deep learning (DL) approaches are explored to measure relative maturity (RM), stand count (SC), and plant height (PH), potentially offering higher throughput, accuracy, and cost-effectiveness than traditional methods. A time series of drone images was utilized to estimate dry bean RM employing a hybrid convolutional neural network (CNN) and long short-term memory (LSTM) model. For early-stage SC assessment, Faster RCNN object detection algorithm was evaluated. Flight frequencies, image resolution, and data augmentation techniques were investigated to enhance DL model performance. PH was obtained using a quantile method from digital surface model (DSM) and point cloud (PC) data sources. The CNN-LSTM model showed high accuracy in RM prediction across various conditions, outperforming traditional image preprocessing approaches. The inclusion of growing degree days (GDD) data improved the model's performance under specific environmental stresses. The Faster R-CNN model effectively identified early-stage bean plants, demonstrating superior accuracy over traditional methods and consistency across different flight altitudes. For PH estimation, moderate correlations with ground-truth data were observed across both datasets analyzed. The choice between PC and DSM source data may depend on specific environmental and flight conditions. Overall, the CNN-LSTM and Faster R-CNN models proved more effective than conventional techniques in quantifying RM and SC. The subtraction method proposed for estimating PH without accurate ground elevation data yielded results comparable to the difference-based method. Additionally, the pipeline and open-source software developed hold potential to significantly benefit the phenotyping community.
期刊介绍:
Plant Phenomics is an Open Access journal published in affiliation with the State Key Laboratory of Crop Genetics & Germplasm Enhancement, Nanjing Agricultural University (NAU) and published by the American Association for the Advancement of Science (AAAS). Like all partners participating in the Science Partner Journal program, Plant Phenomics is editorially independent from the Science family of journals.
The mission of Plant Phenomics is to publish novel research that will advance all aspects of plant phenotyping from the cell to the plant population levels using innovative combinations of sensor systems and data analytics. Plant Phenomics aims also to connect phenomics to other science domains, such as genomics, genetics, physiology, molecular biology, bioinformatics, statistics, mathematics, and computer sciences. Plant Phenomics should thus contribute to advance plant sciences and agriculture/forestry/horticulture by addressing key scientific challenges in the area of plant phenomics.
The scope of the journal covers the latest technologies in plant phenotyping for data acquisition, data management, data interpretation, modeling, and their practical applications for crop cultivation, plant breeding, forestry, horticulture, ecology, and other plant-related domains.