Efficient purification and excitation energy transfer characterization of phycoerythrin 545 from Rhodomonas sp.

IF 1.4 4区 生物学 Q4 BIOCHEMICAL RESEARCH METHODS Protein expression and purification Pub Date : 2024-11-26 DOI:10.1016/j.pep.2024.106634
Yang Pu, Shuo Dong, Jiayu Wang, Min Li, Kai Dong, Wenjun Li, Zhihong Tang
{"title":"Efficient purification and excitation energy transfer characterization of phycoerythrin 545 from Rhodomonas sp.","authors":"Yang Pu, Shuo Dong, Jiayu Wang, Min Li, Kai Dong, Wenjun Li, Zhihong Tang","doi":"10.1016/j.pep.2024.106634","DOIUrl":null,"url":null,"abstract":"<p><p>Cryptomonad phycoerythrin 545 (PE545) is an important type of phycobiliprotein in basic research and technological innovations. Herein, we report a minimalistic hydrophobic chromatography method for its purification. High purity was achieved, with a purity ratio (A<sub>545</sub>/A<sub>280</sub>) of 13.66 and a recovery ratio of 78.63 %. Following SDS-PAGE, Coomassie Brilliant Blue staining revealed three bands at 9 kDa, 10 kDa, and 20 kDa, corresponding to α<sub>1</sub>, α<sub>2</sub> and β subunits. Multiple spectral characteristics were analyzed to ensure that optical activity was consistent with that of the natural protein. Absorption and fluorescence spectroscopies of purified PE545 displayed a strong absorption peak at 545 nm, a shoulder peak at 564 nm, and a fluorescence emission peak at 587 nm, which confirmed unchanged energy transfer properties. Furthermore, the structural and functional integrity, especially the existence of strongly coupled central chromophore pairs with excitation delocalization, was verified by circular dichroism and ultrafast absorption spectroscopy. From the studies of ultrafast absorption spectroscopy of excitation energy transfer (EET) of PE545, four decay components with lifetimes at 0.5 ps, 2.2 ps, 63 ps, and 3000 ps were obtained. In addition, the dynamics of these components confirmed the EET pathways from the central PEB chromophore pairs to the peripheral pigments and localized in the lowest state. Our work will be of considerable value for both fundamental research and applications of PE545.</p>","PeriodicalId":20757,"journal":{"name":"Protein expression and purification","volume":" ","pages":"106634"},"PeriodicalIF":1.4000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Protein expression and purification","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.pep.2024.106634","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Cryptomonad phycoerythrin 545 (PE545) is an important type of phycobiliprotein in basic research and technological innovations. Herein, we report a minimalistic hydrophobic chromatography method for its purification. High purity was achieved, with a purity ratio (A545/A280) of 13.66 and a recovery ratio of 78.63 %. Following SDS-PAGE, Coomassie Brilliant Blue staining revealed three bands at 9 kDa, 10 kDa, and 20 kDa, corresponding to α1, α2 and β subunits. Multiple spectral characteristics were analyzed to ensure that optical activity was consistent with that of the natural protein. Absorption and fluorescence spectroscopies of purified PE545 displayed a strong absorption peak at 545 nm, a shoulder peak at 564 nm, and a fluorescence emission peak at 587 nm, which confirmed unchanged energy transfer properties. Furthermore, the structural and functional integrity, especially the existence of strongly coupled central chromophore pairs with excitation delocalization, was verified by circular dichroism and ultrafast absorption spectroscopy. From the studies of ultrafast absorption spectroscopy of excitation energy transfer (EET) of PE545, four decay components with lifetimes at 0.5 ps, 2.2 ps, 63 ps, and 3000 ps were obtained. In addition, the dynamics of these components confirmed the EET pathways from the central PEB chromophore pairs to the peripheral pigments and localized in the lowest state. Our work will be of considerable value for both fundamental research and applications of PE545.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Protein expression and purification
Protein expression and purification 生物-生化研究方法
CiteScore
3.70
自引率
6.20%
发文量
120
审稿时长
32 days
期刊介绍: Protein Expression and Purification is an international journal providing a forum for the dissemination of new information on protein expression, extraction, purification, characterization, and/or applications using conventional biochemical and/or modern molecular biological approaches and methods, which are of broad interest to the field. The journal does not typically publish repetitive examples of protein expression and purification involving standard, well-established, methods. However, exceptions might include studies on important and/or difficult to express and/or purify proteins and/or studies that include extensive protein characterization, which provide new, previously unpublished information.
期刊最新文献
Isolation and crystallization of copper resistance protein B (CopB) from Acinetobacter baumannii Efficient purification and excitation energy transfer characterization of phycoerythrin 545 from Rhodomonas sp. Expression and purification of the intact bacterial ergothioneine transporter EgtU Editorial Board Recombinant human FOXJ1 protein binds DNA, forms higher-order oligomers, has gel-shifting domains and contains intrinsically disordered regions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1