Patient-derived tumor organoid and fibroblast assembloid models for interrogation of the tumor microenvironment in esophageal adenocarcinoma.

IF 4.3 Q1 BIOCHEMICAL RESEARCH METHODS Cell Reports Methods Pub Date : 2024-12-16 Epub Date: 2024-11-27 DOI:10.1016/j.crmeth.2024.100909
Benjamin P Sharpe, Liliya A Nazlamova, Carmen Tse, David A Johnston, Jaya Thomas, Rhianna Blyth, Oliver J Pickering, Ben Grace, Jack Harrington, Rushda Rajak, Matthew Rose-Zerilli, Zoe S Walters, Tim J Underwood
{"title":"Patient-derived tumor organoid and fibroblast assembloid models for interrogation of the tumor microenvironment in esophageal adenocarcinoma.","authors":"Benjamin P Sharpe, Liliya A Nazlamova, Carmen Tse, David A Johnston, Jaya Thomas, Rhianna Blyth, Oliver J Pickering, Ben Grace, Jack Harrington, Rushda Rajak, Matthew Rose-Zerilli, Zoe S Walters, Tim J Underwood","doi":"10.1016/j.crmeth.2024.100909","DOIUrl":null,"url":null,"abstract":"<p><p>The tumor microenvironment (TME) comprises all non-tumor elements of cancer and strongly influences disease progression and phenotype. To understand tumor biology and accurately test new therapeutic strategies, representative models should contain both tumor cells and normal cells of the TME. Here, we describe and characterize co-culture tumor-derived organoids and cancer-associated fibroblasts (CAFs), a major component of the TME, in matrix-embedded assembloid models of esophageal adenocarcinoma (EAC). We demonstrate that the assembloid models faithfully recapitulate the differentiation status of EAC and different CAF phenotypes found in the EAC patient TME. We evaluate cell phenotypes by combining tissue-clearing techniques with whole-mount immunofluorescence and histology, providing a practical framework for the characterization of cancer assembloids.</p>","PeriodicalId":29773,"journal":{"name":"Cell Reports Methods","volume":" ","pages":"100909"},"PeriodicalIF":4.3000,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11704619/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Reports Methods","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.crmeth.2024.100909","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/27 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

The tumor microenvironment (TME) comprises all non-tumor elements of cancer and strongly influences disease progression and phenotype. To understand tumor biology and accurately test new therapeutic strategies, representative models should contain both tumor cells and normal cells of the TME. Here, we describe and characterize co-culture tumor-derived organoids and cancer-associated fibroblasts (CAFs), a major component of the TME, in matrix-embedded assembloid models of esophageal adenocarcinoma (EAC). We demonstrate that the assembloid models faithfully recapitulate the differentiation status of EAC and different CAF phenotypes found in the EAC patient TME. We evaluate cell phenotypes by combining tissue-clearing techniques with whole-mount immunofluorescence and histology, providing a practical framework for the characterization of cancer assembloids.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
食管癌患者源性肿瘤类器官和成纤维细胞组装体模型研究肿瘤微环境。
肿瘤微环境(TME)包括癌症的所有非肿瘤因素,并强烈影响疾病的进展和表型。为了更好地理解肿瘤生物学,准确地测试新的治疗策略,有代表性的模型应该同时包含肿瘤细胞和TME的正常细胞。在这里,我们描述并表征了食管腺癌(EAC)基质嵌入组装体模型中共培养的肿瘤衍生类器官和癌症相关成纤维细胞(CAFs),这是TME的主要组成部分。我们证明,组装体模型忠实地概括了EAC和EAC患者TME中发现的不同CAF表型的分化状态。我们通过将组织清除技术与全挂载免疫荧光和组织学相结合来评估细胞表型,为癌症组合体的表征提供了一个实用的框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Cell Reports Methods
Cell Reports Methods Chemistry (General), Biochemistry, Genetics and Molecular Biology (General), Immunology and Microbiology (General)
CiteScore
3.80
自引率
0.00%
发文量
0
审稿时长
111 days
期刊最新文献
A real-time, multi-subject three-dimensional pose tracking system for the behavioral analysis of non-human primates. Non-invasive real-time pulsed Doppler assessment of blood flow in mouse ophthalmic artery. Comparative prospects of imaging methods for whole-brain mammalian connectomics. A probabilistic modeling framework for genomic networks incorporating sample heterogeneity. Exploring common mechanisms of adverse drug reactions and disease phenotypes through network-based analysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1