Mohammed Achite, Saeed Samadianfard, Nehal Elshaboury, Kamel Abderezak Toubal, Eslam Mohammed Abdelkader, Milad Sharafi
{"title":"A combined support vector regression with a firefly algorithm for prediction of energy consumption in wastewater treatment plants.","authors":"Mohammed Achite, Saeed Samadianfard, Nehal Elshaboury, Kamel Abderezak Toubal, Eslam Mohammed Abdelkader, Milad Sharafi","doi":"10.2166/wst.2024.375","DOIUrl":null,"url":null,"abstract":"<p><p>Wastewater treatment plants (WWTPs) comprise energy-intensive processes, serving as primary contributors to overall WWTP costs. This research study proposes a novel approach that integrates support vector regression (SVR) with the firefly algorithm (FFA) for the prediction of energy consumption in a WWTP in Chlef City, Algeria. The database comprises a comprehensive set of 1,653 samples, capturing diverse information categories. It includes chemical and physical characteristics, encompassing chemical oxygen demand, 5-day biochemical oxygen demand, potential of hydrogen, water temperature, total suspended sediment in water and basin, influent N-NH<sub>3</sub> concentration, number of aerators, and operating time. Additionally, the hydraulic and energy-related parameters are represented by the flow entered at the station and the energy consumed by aerators, respectively. Finally, meteorological data, comprising rainfall, temperature, relative humidity, and the aridity index, are part of the dataset required for analysis. In this regard, 15 different models that correspond to 15 different combinations of input parameters are assessed in this study. The results show that the SVR-FFA-15 can render an improvement in the prediction accuracy of energy consumption in WWTPs. This study provides a useful tool for managing the energy consumption of wastewater treatment and makes insightful recommendations for future energy savings.</p>","PeriodicalId":23653,"journal":{"name":"Water Science and Technology","volume":"90 10","pages":"2747-2763"},"PeriodicalIF":2.5000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Science and Technology","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.2166/wst.2024.375","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/15 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Wastewater treatment plants (WWTPs) comprise energy-intensive processes, serving as primary contributors to overall WWTP costs. This research study proposes a novel approach that integrates support vector regression (SVR) with the firefly algorithm (FFA) for the prediction of energy consumption in a WWTP in Chlef City, Algeria. The database comprises a comprehensive set of 1,653 samples, capturing diverse information categories. It includes chemical and physical characteristics, encompassing chemical oxygen demand, 5-day biochemical oxygen demand, potential of hydrogen, water temperature, total suspended sediment in water and basin, influent N-NH3 concentration, number of aerators, and operating time. Additionally, the hydraulic and energy-related parameters are represented by the flow entered at the station and the energy consumed by aerators, respectively. Finally, meteorological data, comprising rainfall, temperature, relative humidity, and the aridity index, are part of the dataset required for analysis. In this regard, 15 different models that correspond to 15 different combinations of input parameters are assessed in this study. The results show that the SVR-FFA-15 can render an improvement in the prediction accuracy of energy consumption in WWTPs. This study provides a useful tool for managing the energy consumption of wastewater treatment and makes insightful recommendations for future energy savings.
期刊介绍:
Water Science and Technology publishes peer-reviewed papers on all aspects of the science and technology of water and wastewater. Papers are selected by a rigorous peer review procedure with the aim of rapid and wide dissemination of research results, development and application of new techniques, and related managerial and policy issues. Scientists, engineers, consultants, managers and policy-makers will find this journal essential as a permanent record of progress of research activities and their practical applications.