Black phosphorus nanoplatform coated with platelet membrane improves inhibition of atherosclerosis progression through macrophage targeting and efferocytosis

IF 9.4 1区 医学 Q1 ENGINEERING, BIOMEDICAL Acta Biomaterialia Pub Date : 2025-01-15 DOI:10.1016/j.actbio.2024.11.041
Jiahui Zhang , Zhiwen Wang , Yuhan Liao , Junran Tong , Ran Gao , Zhuanglin Zeng , Yu Bai , Yumiao Wei , Xiaopeng Guo
{"title":"Black phosphorus nanoplatform coated with platelet membrane improves inhibition of atherosclerosis progression through macrophage targeting and efferocytosis","authors":"Jiahui Zhang ,&nbsp;Zhiwen Wang ,&nbsp;Yuhan Liao ,&nbsp;Junran Tong ,&nbsp;Ran Gao ,&nbsp;Zhuanglin Zeng ,&nbsp;Yu Bai ,&nbsp;Yumiao Wei ,&nbsp;Xiaopeng Guo","doi":"10.1016/j.actbio.2024.11.041","DOIUrl":null,"url":null,"abstract":"<div><div>Plaque rupture in atherosclerosis (AS) is a major cause of acute cardiovascular events. Macrophage-induced inflammatory responses and accumulation of excess reactive oxygen species (ROS) primarily induce unstable plaques. Therefore, targeting ROS clearance and functional modulation of macrophages are clinically crucial for improving plaque stability and inhibiting AS progression. Here, we constructed a bionic nano-delivery platform, PBP@siR@PM, using platelet membranes (PM) coated with black phosphorus nanosheets (BPNSs) to target macrophages in atherosclerotic plaques. Meanwhile, PM-coated BPNSs (PBP@siR@PM) were used to deliver small interfering RNA silencing Ca<sup>2+</sup>/calmodulin-dependent protein kinase γ (CaMKIIγ) into macrophages. Furthermore, macrophage efferocytosis was restored by inhibiting CaMKIIγ and increasing the expression of MerTK, a cytosolic receptor, thus promoting the clearance of apoptotic cells from plaques. This study demonstrated that intraplaque macrophage-targeted therapy using the bionic nano-delivery platform PBP@siR@PM effectively removed excess ROS from macrophages, promoted efferocytosis, cleared apoptotic cells in plaques, improved plaque stability, and largely inhibited AS progression in ApoE<sup>–/–</sup> mice after high fat diet. In summary, this study proposes a therapeutic strategy for AS and highlights the outstanding therapeutic potential of biomimetic nanomaterials in this type of chronic inflammatory disease.</div></div><div><h3>Statement of significance</h3><div>Rupture of atherosclerotic unstable plaques is a major cause of acute cardiovascular events. Macrophage-induced chronic inflammation and oxidative stress due to overloaded ROS are major contributors to plaque rupture. In this study, we focused on the improvement of macrophage efferocytosis within the plaque for the effective treatment of atherosclerosis. A bionic nano-delivery platform was constructed using platelet membranes (PM) coated black phosphorus nanosheets (BPNSs) to target macrophages in atherosclerotic plaques. In conclusion, intraplaque macrophage-targeted therapy based on the bionic nano-delivery platform PBP@siR@PM effectively scavenges overloaded ROS in macrophages, promotes efferocytosis, removes apoptotic cells from plaques, and improves plaque stability, which significantly inhibits the progression of atherosclerosis in ApoE<sup>–/–</sup> mice after a high-fat diet.</div></div>","PeriodicalId":237,"journal":{"name":"Acta Biomaterialia","volume":"192 ","pages":"Pages 377-393"},"PeriodicalIF":9.4000,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Biomaterialia","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1742706124007050","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Plaque rupture in atherosclerosis (AS) is a major cause of acute cardiovascular events. Macrophage-induced inflammatory responses and accumulation of excess reactive oxygen species (ROS) primarily induce unstable plaques. Therefore, targeting ROS clearance and functional modulation of macrophages are clinically crucial for improving plaque stability and inhibiting AS progression. Here, we constructed a bionic nano-delivery platform, PBP@siR@PM, using platelet membranes (PM) coated with black phosphorus nanosheets (BPNSs) to target macrophages in atherosclerotic plaques. Meanwhile, PM-coated BPNSs (PBP@siR@PM) were used to deliver small interfering RNA silencing Ca2+/calmodulin-dependent protein kinase γ (CaMKIIγ) into macrophages. Furthermore, macrophage efferocytosis was restored by inhibiting CaMKIIγ and increasing the expression of MerTK, a cytosolic receptor, thus promoting the clearance of apoptotic cells from plaques. This study demonstrated that intraplaque macrophage-targeted therapy using the bionic nano-delivery platform PBP@siR@PM effectively removed excess ROS from macrophages, promoted efferocytosis, cleared apoptotic cells in plaques, improved plaque stability, and largely inhibited AS progression in ApoE–/– mice after high fat diet. In summary, this study proposes a therapeutic strategy for AS and highlights the outstanding therapeutic potential of biomimetic nanomaterials in this type of chronic inflammatory disease.

Statement of significance

Rupture of atherosclerotic unstable plaques is a major cause of acute cardiovascular events. Macrophage-induced chronic inflammation and oxidative stress due to overloaded ROS are major contributors to plaque rupture. In this study, we focused on the improvement of macrophage efferocytosis within the plaque for the effective treatment of atherosclerosis. A bionic nano-delivery platform was constructed using platelet membranes (PM) coated black phosphorus nanosheets (BPNSs) to target macrophages in atherosclerotic plaques. In conclusion, intraplaque macrophage-targeted therapy based on the bionic nano-delivery platform PBP@siR@PM effectively scavenges overloaded ROS in macrophages, promotes efferocytosis, removes apoptotic cells from plaques, and improves plaque stability, which significantly inhibits the progression of atherosclerosis in ApoE–/– mice after a high-fat diet.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
涂覆血小板膜的黑磷纳米平台通过巨噬细胞靶向和efferocytosis改善动脉粥样硬化进展的抑制作用。
动脉粥样硬化(AS)斑块破裂是急性心血管事件的主要原因。巨噬细胞诱导的炎症反应和过量活性氧(ROS)的积累主要诱导不稳定斑块。因此,靶向ROS清除和巨噬细胞功能调节在临床上对于改善斑块稳定性和抑制AS进展至关重要。在这里,我们构建了一个仿生纳米递送平台PBP@siR@PM,利用涂有黑磷纳米片(BPNSs)的血小板膜(PM)靶向动脉粥样硬化斑块中的巨噬细胞。同时,pm包被的BPNSs (PBP@siR@PM)被用于将小干扰RNA沉默Ca2+/钙调素依赖性蛋白激酶γ (CaMKIIγ)递送到巨噬细胞。此外,通过抑制CaMKIIγ和增加胞质受体MerTK的表达,巨噬细胞的efferocytosis得以恢复,从而促进斑块中凋亡细胞的清除。本研究表明,采用仿生纳米递送平台PBP@siR@PM的斑块内巨噬细胞靶向治疗可有效去除巨噬细胞中过量的ROS,促进efferocytosis,清除斑块中的凋亡细胞,提高斑块稳定性,并在很大程度上抑制ApoE-/-小鼠高脂饮食后AS的进展。总之,本研究提出了一种治疗AS的策略,并强调了仿生纳米材料在这类慢性炎症性疾病中的突出治疗潜力。意义声明:动脉粥样硬化不稳定斑块破裂是急性心血管事件的主要原因。巨噬细胞引起的慢性炎症和氧化应激是导致斑块破裂的主要原因。在本研究中,我们着眼于改善斑块内巨噬细胞的efferocytosis以有效治疗动脉粥样硬化。利用血小板膜(PM)包被黑磷纳米片(BPNSs)构建了靶向动脉粥样硬化斑块巨噬细胞的仿生纳米递送平台。综上所述,基于仿生纳米递送平台PBP@siR@PM的斑块内巨噬细胞靶向治疗可有效清除巨噬细胞中超载的ROS,促进efferocytosis,清除斑块中的凋亡细胞,提高斑块稳定性,显著抑制ApoE-/-小鼠高脂饮食后动脉粥样硬化的进展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
文献相关原料
公司名称
产品信息
索莱宝
CCK-8 solution
索莱宝
calcein-AM
索莱宝
phloxocyclic peptide
麦克林
n-hydroxysuccinimide (NHS)
麦克林
PEG
麦克林
tetrabutylammonium hexafluorophosphate
麦克林
propylene carbonate
来源期刊
Acta Biomaterialia
Acta Biomaterialia 工程技术-材料科学:生物材料
CiteScore
16.80
自引率
3.10%
发文量
776
审稿时长
30 days
期刊介绍: Acta Biomaterialia is a monthly peer-reviewed scientific journal published by Elsevier. The journal was established in January 2005. The editor-in-chief is W.R. Wagner (University of Pittsburgh). The journal covers research in biomaterials science, including the interrelationship of biomaterial structure and function from macroscale to nanoscale. Topical coverage includes biomedical and biocompatible materials.
期刊最新文献
Editorial Board Corrigendum to “A composite hydrogel with co-delivery of antimicrobial peptides and platelet-rich plasma to enhance healing of infected wounds in diabetes” [Acta Biomaterialia 2021, 124, 205-218] Corrigendum to “Vascular Endothelial Growth Factor-Capturing Aligned Electrospun Polycaprolactone/Gelatin Nanofibers Promote Patellar Ligament Regeneration” [Acta Biomaterialia 140, 2022, 122-246] Physical exercise impacts bone remodeling around bio-resorbable magnesium implants A metal-organic framework functionalized CaO2-based cascade nanoreactor induces synergistic cuproptosis/ferroptosis and Ca2+ overload-mediated mitochondrial damage for enhanced sono-chemodynamic immunotherapy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1