{"title":"Balance of Communication and Convergence: Predefined-Time Distributed Optimization Based on Zero-Gradient-Sum","authors":"Renyongkang Zhang;Ge Guo;Zeng-Di Zhou","doi":"10.1109/TCYB.2024.3498323","DOIUrl":null,"url":null,"abstract":"This article proposes a distributed optimization algorithm with a convergence time that can be assigned in advance according to task requirements. To this end, a sliding manifold is introduced to achieve the sum of local gradients approaching zero, based on which a distributed protocol is derived to reach a consensus minimizing the global cost. A novel approach for convergence analysis is derived in a unified settling time framework, resulting in an algorithm that can precisely converge to the optimal solution at the prescribed time. The method is interesting as it simply requires the primal states to be shared over the network, which implies less communication requirements. The result is extended to scenarios with time-varying objective function, by introducing local gradients prediction and nonsmooth consensus terms. Numerical simulations are provided to corroborate the effectiveness of the proposed algorithms.","PeriodicalId":13112,"journal":{"name":"IEEE Transactions on Cybernetics","volume":"55 2","pages":"661-671"},"PeriodicalIF":9.4000,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Cybernetics","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10769523/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
This article proposes a distributed optimization algorithm with a convergence time that can be assigned in advance according to task requirements. To this end, a sliding manifold is introduced to achieve the sum of local gradients approaching zero, based on which a distributed protocol is derived to reach a consensus minimizing the global cost. A novel approach for convergence analysis is derived in a unified settling time framework, resulting in an algorithm that can precisely converge to the optimal solution at the prescribed time. The method is interesting as it simply requires the primal states to be shared over the network, which implies less communication requirements. The result is extended to scenarios with time-varying objective function, by introducing local gradients prediction and nonsmooth consensus terms. Numerical simulations are provided to corroborate the effectiveness of the proposed algorithms.
期刊介绍:
The scope of the IEEE Transactions on Cybernetics includes computational approaches to the field of cybernetics. Specifically, the transactions welcomes papers on communication and control across machines or machine, human, and organizations. The scope includes such areas as computational intelligence, computer vision, neural networks, genetic algorithms, machine learning, fuzzy systems, cognitive systems, decision making, and robotics, to the extent that they contribute to the theme of cybernetics or demonstrate an application of cybernetics principles.