Gold/HNTf2-Cocatalyzed Asymmetric Annulation of Diazo-Alkynes: Divergent Construction of Atropisomeric Biaryls and Arylquinones

IF 14.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Journal of the American Chemical Society Pub Date : 2024-11-30 DOI:10.1021/jacs.4c12063
Yi-Bo Wang, Wei Liu, Ting Li, Yazhu Lu, Yi-Tian Yu, Hai-Tao Liu, Meiwen Liu, Pengfei Li, Peng-Cheng Qian, Hao Tang, Jia Guan, Long-Wu Ye, Long Li
{"title":"Gold/HNTf2-Cocatalyzed Asymmetric Annulation of Diazo-Alkynes: Divergent Construction of Atropisomeric Biaryls and Arylquinones","authors":"Yi-Bo Wang, Wei Liu, Ting Li, Yazhu Lu, Yi-Tian Yu, Hai-Tao Liu, Meiwen Liu, Pengfei Li, Peng-Cheng Qian, Hao Tang, Jia Guan, Long-Wu Ye, Long Li","doi":"10.1021/jacs.4c12063","DOIUrl":null,"url":null,"abstract":"Due to the inherent challenges posed by the linear coordination of gold(I) complexes, asymmetric gold-catalyzed processes remain challenging, particularly in the atroposelective synthesis of axially chiral skeletons. Except for extremely few examples of intramolecular annulations, the construction of axial chirality via asymmetric gold-catalyzed intermolecular alkyne transformation is still undeveloped. Herein, a gold/HNTf<sub>2</sub>-cocatalyzed asymmetric diazo-alkyne annulation is developed, allowing the atroposelective and divergent synthesis of chiral non-<i>C</i><sub>2</sub>-symmetric biaryls and arylquinones in generally good to excellent yield (up to 93% yield) and enantioselectivity (up to 99% ee), with broad substrate scope. Notably, this work represents the first gold-catalyzed atroposelective construction in an intermolecular manner. More interestingly, this strategy is successfully extended to the first asymmetric construction of seven-membered-ring atropisomers bearing one carbon-centered chirality in excellent diastereoselectivity and high enantioselectivity (up to 93% ee and 50:1 dr). Remarkably, the utility of this methodology is further illustrated by the successful application of a representative axially chiral ligand in a series of enantioselective reactions. Importantly, the Brønsted acid as a proton-shuttle cocatalyst significantly promotes this asymmetric annulation. Additionally, the origin of enantioselectivity of this annulation and the role of HNTf<sub>2</sub> are disclosed by density functional calculations and control experiments.","PeriodicalId":49,"journal":{"name":"Journal of the American Chemical Society","volume":"200 1","pages":""},"PeriodicalIF":14.4000,"publicationDate":"2024-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/jacs.4c12063","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Due to the inherent challenges posed by the linear coordination of gold(I) complexes, asymmetric gold-catalyzed processes remain challenging, particularly in the atroposelective synthesis of axially chiral skeletons. Except for extremely few examples of intramolecular annulations, the construction of axial chirality via asymmetric gold-catalyzed intermolecular alkyne transformation is still undeveloped. Herein, a gold/HNTf2-cocatalyzed asymmetric diazo-alkyne annulation is developed, allowing the atroposelective and divergent synthesis of chiral non-C2-symmetric biaryls and arylquinones in generally good to excellent yield (up to 93% yield) and enantioselectivity (up to 99% ee), with broad substrate scope. Notably, this work represents the first gold-catalyzed atroposelective construction in an intermolecular manner. More interestingly, this strategy is successfully extended to the first asymmetric construction of seven-membered-ring atropisomers bearing one carbon-centered chirality in excellent diastereoselectivity and high enantioselectivity (up to 93% ee and 50:1 dr). Remarkably, the utility of this methodology is further illustrated by the successful application of a representative axially chiral ligand in a series of enantioselective reactions. Importantly, the Brønsted acid as a proton-shuttle cocatalyst significantly promotes this asymmetric annulation. Additionally, the origin of enantioselectivity of this annulation and the role of HNTf2 are disclosed by density functional calculations and control experiments.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
24.40
自引率
6.00%
发文量
2398
审稿时长
1.6 months
期刊介绍: The flagship journal of the American Chemical Society, known as the Journal of the American Chemical Society (JACS), has been a prestigious publication since its establishment in 1879. It holds a preeminent position in the field of chemistry and related interdisciplinary sciences. JACS is committed to disseminating cutting-edge research papers, covering a wide range of topics, and encompasses approximately 19,000 pages of Articles, Communications, and Perspectives annually. With a weekly publication frequency, JACS plays a vital role in advancing the field of chemistry by providing essential research.
期刊最新文献
Gold/HNTf2-Cocatalyzed Asymmetric Annulation of Diazo-Alkynes: Divergent Construction of Atropisomeric Biaryls and Arylquinones Above-Room-Temperature Ferromagnetism Regulation in Two-Dimensional Heterostructures by van der Waals Interfacial Magnetochemistry Single-Crystal Dynamic Covalent Organic Frameworks for Adaptive Guest Alignments Bioorthogonal Activation of Deep Red Photoredox Catalysis Inducing Pyroptosis Biosynthesis-Encoded Lipogenic Acetyl-CoA Measurement Using NMR Reveals Glucose-Driven Lipogenesis and Glutamine's Alternative Roles in Kidney Cancer.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1