A comparison of established and digital surface model (DSM)‐based methods to determine population estimates and densities for king penguin colonies, using fixed‐wing drone and satellite imagery

IF 3.9 2区 环境科学与生态学 Q1 ECOLOGY Remote Sensing in Ecology and Conservation Pub Date : 2024-11-29 DOI:10.1002/rse2.424
J. Coleman, N. Fenney, P.N. Trathan, A. Fox, E. Fox, A. Bennison, L. Ireland, M.A. Collins, P.R. Hollyman
{"title":"A comparison of established and digital surface model (DSM)‐based methods to determine population estimates and densities for king penguin colonies, using fixed‐wing drone and satellite imagery","authors":"J. Coleman, N. Fenney, P.N. Trathan, A. Fox, E. Fox, A. Bennison, L. Ireland, M.A. Collins, P.R. Hollyman","doi":"10.1002/rse2.424","DOIUrl":null,"url":null,"abstract":"Drones are being increasingly used to monitor wildlife populations; their large spatial coverage and minimal disturbance make them ideal for use in remote environments where access and time are limited. The methods used to count resulting imagery need consideration as they can be time‐consuming and costly. In this study, we used a fixed‐wing drone and Beyond Visual Line of Sight flying to create high‐resolution imagery and digital surface models (DSMs) of six large king penguin colonies (colony population sizes ranging from 10,671 to 132,577 pairs) in South Georgia. We used a novel DSM‐based method to facilitate automated and semi‐automated counts of each colony to estimate population size. We assessed these DSM‐derived counts against other popular counting and post‐processing methodologies, including those from satellite imagery, and compared these to the results from four colonies counted manually to evaluate accuracy and effort. We randomly subsampled four colonies to test the most efficient and accurate methods for density‐based counts, including at the colony edge, where population density is lower. Sub‐sampling quadrats (each 25 m<jats:sup>2</jats:sup>) together with DSM‐based counts offered the best compromise between accuracy and effort. Where high‐resolution drone imagery was available, accuracy was within 3.5% of manual reference counts. DSM methods were more accurate than other established methods including estimation from satellite imagery and are applicable for population studies across other taxa worldwide. Results and methods will be used to inform and develop a long‐term king penguin monitoring programme.","PeriodicalId":21132,"journal":{"name":"Remote Sensing in Ecology and Conservation","volume":"46 1","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Remote Sensing in Ecology and Conservation","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1002/rse2.424","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Drones are being increasingly used to monitor wildlife populations; their large spatial coverage and minimal disturbance make them ideal for use in remote environments where access and time are limited. The methods used to count resulting imagery need consideration as they can be time‐consuming and costly. In this study, we used a fixed‐wing drone and Beyond Visual Line of Sight flying to create high‐resolution imagery and digital surface models (DSMs) of six large king penguin colonies (colony population sizes ranging from 10,671 to 132,577 pairs) in South Georgia. We used a novel DSM‐based method to facilitate automated and semi‐automated counts of each colony to estimate population size. We assessed these DSM‐derived counts against other popular counting and post‐processing methodologies, including those from satellite imagery, and compared these to the results from four colonies counted manually to evaluate accuracy and effort. We randomly subsampled four colonies to test the most efficient and accurate methods for density‐based counts, including at the colony edge, where population density is lower. Sub‐sampling quadrats (each 25 m2) together with DSM‐based counts offered the best compromise between accuracy and effort. Where high‐resolution drone imagery was available, accuracy was within 3.5% of manual reference counts. DSM methods were more accurate than other established methods including estimation from satellite imagery and are applicable for population studies across other taxa worldwide. Results and methods will be used to inform and develop a long‐term king penguin monitoring programme.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Remote Sensing in Ecology and Conservation
Remote Sensing in Ecology and Conservation Earth and Planetary Sciences-Computers in Earth Sciences
CiteScore
9.80
自引率
5.50%
发文量
69
审稿时长
18 weeks
期刊介绍: emote Sensing in Ecology and Conservation provides a forum for rapid, peer-reviewed publication of novel, multidisciplinary research at the interface between remote sensing science and ecology and conservation. The journal prioritizes findings that advance the scientific basis of ecology and conservation, promoting the development of remote-sensing based methods relevant to the management of land use and biological systems at all levels, from populations and species to ecosystems and biomes. The journal defines remote sensing in its broadest sense, including data acquisition by hand-held and fixed ground-based sensors, such as camera traps and acoustic recorders, and sensors on airplanes and satellites. The intended journal’s audience includes ecologists, conservation scientists, policy makers, managers of terrestrial and aquatic systems, remote sensing scientists, and students. Remote Sensing in Ecology and Conservation is a fully open access journal from Wiley and the Zoological Society of London. Remote sensing has enormous potential as to provide information on the state of, and pressures on, biological diversity and ecosystem services, at multiple spatial and temporal scales. This new publication provides a forum for multidisciplinary research in remote sensing science, ecological research and conservation science.
期刊最新文献
A comparison of established and digital surface model (DSM)‐based methods to determine population estimates and densities for king penguin colonies, using fixed‐wing drone and satellite imagery Illuminating the Arctic: Unveiling seabird responses to artificial light during polar darkness through citizen science and remote sensing Near real‐time monitoring of wading birds using uncrewed aircraft systems and computer vision Examining wildfire dynamics using ECOSTRESS data with machine learning approaches: the case of South‐Eastern Australia's black summer Amazonian manatee critical habitat revealed by artificial intelligence‐based passive acoustic techniques
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1