Zhenyu Zhang, Tao Wang, Hailing Jiang, Xifan Xu, Jinlin Wang, Ziruo Wang, Fang Liu, Ye Yu, Yuantao Zhang, Ping Wang, Peng Gao, Bo Shen, Xinqiang Wang
{"title":"Phonon dispersion of buckled two-dimensional GaN","authors":"Zhenyu Zhang, Tao Wang, Hailing Jiang, Xifan Xu, Jinlin Wang, Ziruo Wang, Fang Liu, Ye Yu, Yuantao Zhang, Ping Wang, Peng Gao, Bo Shen, Xinqiang Wang","doi":"10.1038/s41467-024-54921-8","DOIUrl":null,"url":null,"abstract":"<p>Group-III nitride semiconductors such as GaN have various important applications based on their three-dimensional form. Previous work has demonstrated the realization of buckled two-dimensional GaN, which can be used in GaN-based nanodevices. However, the understanding of buckled two-dimensional GaN remains limited due to the difficulties in experimental characterization. Here, for the first time, we have experimentally determined the phonon dispersion of buckled two-dimensional GaN by using monochromatic electron energy loss spectroscopy in conjunction with scanning transmission electron microscopy. A phonon band gap of ~40 meV between the acoustic and optical phonon branches is identified for buckled two-dimensional GaN. This phonon band gap is significantly larger than that of ~20 meV for the tetrahedral-coordinated three-dimensional GaN. Our theoretical calculations confirm this larger phonon band gap. Our findings provide critical insights into the phonon behavior of buckled two-dimensional GaN, which can be used to guide high-performance thermal management in GaN-based high-power devices.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"8 1","pages":""},"PeriodicalIF":14.7000,"publicationDate":"2024-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-024-54921-8","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Group-III nitride semiconductors such as GaN have various important applications based on their three-dimensional form. Previous work has demonstrated the realization of buckled two-dimensional GaN, which can be used in GaN-based nanodevices. However, the understanding of buckled two-dimensional GaN remains limited due to the difficulties in experimental characterization. Here, for the first time, we have experimentally determined the phonon dispersion of buckled two-dimensional GaN by using monochromatic electron energy loss spectroscopy in conjunction with scanning transmission electron microscopy. A phonon band gap of ~40 meV between the acoustic and optical phonon branches is identified for buckled two-dimensional GaN. This phonon band gap is significantly larger than that of ~20 meV for the tetrahedral-coordinated three-dimensional GaN. Our theoretical calculations confirm this larger phonon band gap. Our findings provide critical insights into the phonon behavior of buckled two-dimensional GaN, which can be used to guide high-performance thermal management in GaN-based high-power devices.
期刊介绍:
Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.