Adaptive Dynamic Programming-Based Fixed-Time Optimal Control for Wheeled Mobile Robot

IF 5.3 2区 计算机科学 Q2 ROBOTICS IEEE Robotics and Automation Letters Pub Date : 2024-11-21 DOI:10.1109/LRA.2024.3504314
Chen Wang;Haoran Zhan;Qing Guo;Tieshan Li
{"title":"Adaptive Dynamic Programming-Based Fixed-Time Optimal Control for Wheeled Mobile Robot","authors":"Chen Wang;Haoran Zhan;Qing Guo;Tieshan Li","doi":"10.1109/LRA.2024.3504314","DOIUrl":null,"url":null,"abstract":"In this study, the adaptive dynamic programming (ADP)-based fixed-time optimal trajectory tracking control is investigated for wheeled mobile robots. An ADP-based fixed-time optimal tracking controller is developed based on the critic-only neural network ADP technique, which guarantees the robot track the desired trajectory in fixed time. Firstly, to address the solution difficulty of the Hamilton-Jacobi-Bellman (HJB) equation, a critic neural network is used to estimate the cost function. Meanwhile, a weight update law is designed by using the adaptive control technique, which not only removes the persistent or finite excitation condition, but also enables the fixed-time convergence of the weight estimation error. By using the proposed controller, all error variables can converge to a neighborhood of zero in fixed time. Finally, both simulations and physical experiments indicate that the proposed ADP-based fixed-time optimal controller has a faster convergence rate compared to the two comparison controllers.","PeriodicalId":13241,"journal":{"name":"IEEE Robotics and Automation Letters","volume":"10 1","pages":"176-183"},"PeriodicalIF":5.3000,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Robotics and Automation Letters","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10759734/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, the adaptive dynamic programming (ADP)-based fixed-time optimal trajectory tracking control is investigated for wheeled mobile robots. An ADP-based fixed-time optimal tracking controller is developed based on the critic-only neural network ADP technique, which guarantees the robot track the desired trajectory in fixed time. Firstly, to address the solution difficulty of the Hamilton-Jacobi-Bellman (HJB) equation, a critic neural network is used to estimate the cost function. Meanwhile, a weight update law is designed by using the adaptive control technique, which not only removes the persistent or finite excitation condition, but also enables the fixed-time convergence of the weight estimation error. By using the proposed controller, all error variables can converge to a neighborhood of zero in fixed time. Finally, both simulations and physical experiments indicate that the proposed ADP-based fixed-time optimal controller has a faster convergence rate compared to the two comparison controllers.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于自适应动态规划的轮式移动机器人固定时间最优控制
研究了基于自适应动态规划(ADP)的轮式移动机器人固定时间最优轨迹跟踪控制。基于全临界神经网络ADP技术,设计了一种基于ADP的固定时间最优跟踪控制器,保证机器人在固定时间内跟踪期望轨迹。首先,针对Hamilton-Jacobi-Bellman (HJB)方程求解困难的问题,采用评价神经网络对代价函数进行估计。同时,利用自适应控制技术设计了权值更新律,既消除了持续或有限激励条件,又使权值估计误差具有定时收敛性。利用该控制器,所有误差变量都能在固定时间内收敛到零的邻域。最后,仿真和物理实验表明,与两种比较控制器相比,基于adp的固定时间最优控制器具有更快的收敛速度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Robotics and Automation Letters
IEEE Robotics and Automation Letters Computer Science-Computer Science Applications
CiteScore
9.60
自引率
15.40%
发文量
1428
期刊介绍: The scope of this journal is to publish peer-reviewed articles that provide a timely and concise account of innovative research ideas and application results, reporting significant theoretical findings and application case studies in areas of robotics and automation.
期刊最新文献
Design and Actuation of a Multipole Ring Magnet for Navigating Endovascular Magnetic Instruments Online Modifications of High-Level Swarm Behaviors A Robust and Efficient Visual-Inertial SLAM Using Hybrid Point-Line Features Autonomous Robotic Bone Micro-Milling System With Automatic Calibration and 3D Surface Fitting Data-Efficient Constrained Robot Learning With Probabilistic Lagrangian Control
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1