{"title":"Fabrication and characterization of fenugreek-g-poly(acrylic acid) hydrogel for effective adsorption of crystal violet dye","authors":"Jyotendra Nath, Shashikant Kumar, Vijay Kumar","doi":"10.1007/s10450-024-00568-2","DOIUrl":null,"url":null,"abstract":"<div><p>In this study, an FG-g-poly(AA) hydrogel was synthesized by polymerizing acrylic acid onto fenugreek gum (FG) using MBA as a crosslinker and APS as an initiator in a hot air oven. The RSM-CCD model was employed to optimize various parameters, including the amounts of monomer, crosslinker, and initiator. The prepared hydrogel was characterized using FTIR, XRD, FE-SEM, TGA, and BET to confirm its crosslinked network, morphology, thermal stability, and surface charge. The hydrogel’s surface area, pore volume, and pore diameter were determined to be 16.332 m<sup>2</sup>/g, 0.046 cc/g, and 3.712 nm, respectively. Adsorption studies were conducted under various conditions, with different initial dye concentrations, temperatures, and pH levels. Under optimal conditions, the hydrogel achieved a maximum dye removal capacity of 97.3% for crystal violet (CV) dye within 6 h. The Langmuir isotherm model fitted the data well, and the maximal capacity for CV adsorption was 925.9 mg/g. A negative ΔG value indicates the feasibility and spontaneity of the adsorption process, while a positive ΔH suggests that the adsorption was endothermic. Thus, the synthesized hydrogel is an excellent candidate for eliminating CV dye from wastewater solutions.</p></div>","PeriodicalId":458,"journal":{"name":"Adsorption","volume":"31 1","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2024-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Adsorption","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10450-024-00568-2","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
In this study, an FG-g-poly(AA) hydrogel was synthesized by polymerizing acrylic acid onto fenugreek gum (FG) using MBA as a crosslinker and APS as an initiator in a hot air oven. The RSM-CCD model was employed to optimize various parameters, including the amounts of monomer, crosslinker, and initiator. The prepared hydrogel was characterized using FTIR, XRD, FE-SEM, TGA, and BET to confirm its crosslinked network, morphology, thermal stability, and surface charge. The hydrogel’s surface area, pore volume, and pore diameter were determined to be 16.332 m2/g, 0.046 cc/g, and 3.712 nm, respectively. Adsorption studies were conducted under various conditions, with different initial dye concentrations, temperatures, and pH levels. Under optimal conditions, the hydrogel achieved a maximum dye removal capacity of 97.3% for crystal violet (CV) dye within 6 h. The Langmuir isotherm model fitted the data well, and the maximal capacity for CV adsorption was 925.9 mg/g. A negative ΔG value indicates the feasibility and spontaneity of the adsorption process, while a positive ΔH suggests that the adsorption was endothermic. Thus, the synthesized hydrogel is an excellent candidate for eliminating CV dye from wastewater solutions.
期刊介绍:
The journal Adsorption provides authoritative information on adsorption and allied fields to scientists, engineers, and technologists throughout the world. The information takes the form of peer-reviewed articles, R&D notes, topical review papers, tutorial papers, book reviews, meeting announcements, and news.
Coverage includes fundamental and practical aspects of adsorption: mathematics, thermodynamics, chemistry, and physics, as well as processes, applications, models engineering, and equipment design.
Among the topics are Adsorbents: new materials, new synthesis techniques, characterization of structure and properties, and applications; Equilibria: novel theories or semi-empirical models, experimental data, and new measurement methods; Kinetics: new models, experimental data, and measurement methods. Processes: chemical, biochemical, environmental, and other applications, purification or bulk separation, fixed bed or moving bed systems, simulations, experiments, and design procedures.