Quentin Delobelle, Théo Jaffrelot Inizan, Olivier Adjoua, Louis Lagardère, Frederic Célerse, Vincent Maréchal, Jean-Philip Piquemal
{"title":"High-resolution Molecular Dynamics Simulations of the Pyruvate Kinase Muscle Isoform 1 and 2 (PKM1/2).","authors":"Quentin Delobelle, Théo Jaffrelot Inizan, Olivier Adjoua, Louis Lagardère, Frederic Célerse, Vincent Maréchal, Jean-Philip Piquemal","doi":"10.1002/chem.202402534","DOIUrl":null,"url":null,"abstract":"<p><p>Glucose metabolism plays a pivotal role in physiological processes and cancer growth. The final stage of glycolysis, converting phosphoenolpyruvate (PEP) into pyruvate, is catalyzed by the pyruvate kinase (PK) enzyme. Whereas PKM1 is mainly expressed in cells with high energy requirements, PKM2 is preferentially expressed in proliferating cells, including tumor cells. Structural analysis of PKM1 and PKM2 is essential to design new molecules with antitumoral activity. To understand their structural dynamics, we performed extensive high-resolution molecular dynamics (MD) simulations using adaptive sampling techniques coupled to the polarizable AMOEBA force field. Performing more than 6 µs of simulation, we considered all oligomerization states of PKM2 and propose structural insights for PKM1 to further study the PKM2-specific allostery. We focused on key sites including the active site and the natural substrate Fructose Bi-Phosphate (FBP) fixation pocket. Additionally, we present the first MD simulation of biologically active PKM1 and uncover important similarities with its PKM2 counterpart \\textcolor{red}{bound} to FBP. We also analysed TEPP-46's fixation, a pharmacological activator binding a different pocket, on PKM2 and highlighted the structural differences and similarities compared to PKM2 bound to FBP. Finally, we determined potential new cryptic pockets specific to PKM2 for drug targeting.</p>","PeriodicalId":144,"journal":{"name":"Chemistry - A European Journal","volume":" ","pages":"e202402534"},"PeriodicalIF":3.9000,"publicationDate":"2024-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemistry - A European Journal","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/chem.202402534","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Glucose metabolism plays a pivotal role in physiological processes and cancer growth. The final stage of glycolysis, converting phosphoenolpyruvate (PEP) into pyruvate, is catalyzed by the pyruvate kinase (PK) enzyme. Whereas PKM1 is mainly expressed in cells with high energy requirements, PKM2 is preferentially expressed in proliferating cells, including tumor cells. Structural analysis of PKM1 and PKM2 is essential to design new molecules with antitumoral activity. To understand their structural dynamics, we performed extensive high-resolution molecular dynamics (MD) simulations using adaptive sampling techniques coupled to the polarizable AMOEBA force field. Performing more than 6 µs of simulation, we considered all oligomerization states of PKM2 and propose structural insights for PKM1 to further study the PKM2-specific allostery. We focused on key sites including the active site and the natural substrate Fructose Bi-Phosphate (FBP) fixation pocket. Additionally, we present the first MD simulation of biologically active PKM1 and uncover important similarities with its PKM2 counterpart \textcolor{red}{bound} to FBP. We also analysed TEPP-46's fixation, a pharmacological activator binding a different pocket, on PKM2 and highlighted the structural differences and similarities compared to PKM2 bound to FBP. Finally, we determined potential new cryptic pockets specific to PKM2 for drug targeting.
期刊介绍:
Chemistry—A European Journal is a truly international journal with top quality contributions (2018 ISI Impact Factor: 5.16). It publishes a wide range of outstanding Reviews, Minireviews, Concepts, Full Papers, and Communications from all areas of chemistry and related fields.
Based in Europe Chemistry—A European Journal provides an excellent platform for increasing the visibility of European chemistry as well as for featuring the best research from authors from around the world.
All manuscripts are peer-reviewed, and electronic processing ensures accurate reproduction of text and data, plus short publication times.
The Concepts section provides nonspecialist readers with a useful conceptual guide to unfamiliar areas and experts with new angles on familiar problems.
Chemistry—A European Journal is published on behalf of ChemPubSoc Europe, a group of 16 national chemical societies from within Europe, and supported by the Asian Chemical Editorial Societies. The ChemPubSoc Europe family comprises: Angewandte Chemie, Chemistry—A European Journal, European Journal of Organic Chemistry, European Journal of Inorganic Chemistry, ChemPhysChem, ChemBioChem, ChemMedChem, ChemCatChem, ChemSusChem, ChemPlusChem, ChemElectroChem, and ChemistryOpen.