Sara Escalera-Anzola , Maria Rosado , Yuchen Yang , Daniel Parra-Sanchez , Carolina San Pedro-Liberal , Pilar Acedo
{"title":"Breakthroughs in nanoparticle-based strategies for pancreatic cancer therapy","authors":"Sara Escalera-Anzola , Maria Rosado , Yuchen Yang , Daniel Parra-Sanchez , Carolina San Pedro-Liberal , Pilar Acedo","doi":"10.1016/j.bcp.2024.116685","DOIUrl":null,"url":null,"abstract":"<div><div>Pancreatic ductal adenocarcinoma (PDAC) is one of the deadliest cancers worldwide, mainly due to its high heterogeneity, resistance to therapy and late diagnosis, with a 5-year survival rate of less than 10%. This dismal prognosis has promoted strategies to develop more effective treatments. Nanoparticle-based strategies have emerged, in the last decades, as a great opportunity because they can enhance drug delivery and promote controlled release, presenting lower side effects than conventional therapeutic regimens. Moreover, nanoparticles can often be modified to target specific cells or to achieve a sustained release of the drugs into the tumor. However, very few nanoparticle-based therapies are clinically approved. Concretely for pancreatic cancer treatment only two nanoformulations have been approved by the US Food and Drug Administration (FDA) and the European Medicines Agency (EMA) so far. Clinical translation of nanoparticles remains a challenge for modern medicine, and in particular for pancreatic cancer therapy, because of the complexity of the disease, and a lack of studies been performed in clinically relevant <em>in vitro</em> and <em>in vivo</em> models. In this review, we have summarized the most recent clinical trials using nanoparticle-based formulations in PDAC, giving a small context of the diverse types of nanoparticles employed and the most recent advancements in the field.</div></div>","PeriodicalId":8806,"journal":{"name":"Biochemical pharmacology","volume":"232 ","pages":"Article 116685"},"PeriodicalIF":5.3000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemical pharmacology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0006295224006865","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the deadliest cancers worldwide, mainly due to its high heterogeneity, resistance to therapy and late diagnosis, with a 5-year survival rate of less than 10%. This dismal prognosis has promoted strategies to develop more effective treatments. Nanoparticle-based strategies have emerged, in the last decades, as a great opportunity because they can enhance drug delivery and promote controlled release, presenting lower side effects than conventional therapeutic regimens. Moreover, nanoparticles can often be modified to target specific cells or to achieve a sustained release of the drugs into the tumor. However, very few nanoparticle-based therapies are clinically approved. Concretely for pancreatic cancer treatment only two nanoformulations have been approved by the US Food and Drug Administration (FDA) and the European Medicines Agency (EMA) so far. Clinical translation of nanoparticles remains a challenge for modern medicine, and in particular for pancreatic cancer therapy, because of the complexity of the disease, and a lack of studies been performed in clinically relevant in vitro and in vivo models. In this review, we have summarized the most recent clinical trials using nanoparticle-based formulations in PDAC, giving a small context of the diverse types of nanoparticles employed and the most recent advancements in the field.
期刊介绍:
Biochemical Pharmacology publishes original research findings, Commentaries and review articles related to the elucidation of cellular and tissue function(s) at the biochemical and molecular levels, the modification of cellular phenotype(s) by genetic, transcriptional/translational or drug/compound-induced modifications, as well as the pharmacodynamics and pharmacokinetics of xenobiotics and drugs, the latter including both small molecules and biologics.
The journal''s target audience includes scientists engaged in the identification and study of the mechanisms of action of xenobiotics, biologics and drugs and in the drug discovery and development process.
All areas of cellular biology and cellular, tissue/organ and whole animal pharmacology fall within the scope of the journal. Drug classes covered include anti-infectives, anti-inflammatory agents, chemotherapeutics, cardiovascular, endocrinological, immunological, metabolic, neurological and psychiatric drugs, as well as research on drug metabolism and kinetics. While medicinal chemistry is a topic of complimentary interest, manuscripts in this area must contain sufficient biological data to characterize pharmacologically the compounds reported. Submissions describing work focused predominately on chemical synthesis and molecular modeling will not be considered for review.
While particular emphasis is placed on reporting the results of molecular and biochemical studies, research involving the use of tissue and animal models of human pathophysiology and toxicology is of interest to the extent that it helps define drug mechanisms of action, safety and efficacy.