Application of statistical designs strategy to improve cellulase production using agro-waste residue by a novel isolate Bacillus licheniformis strain-MA1 and assessing the enzyme effect on apple juice quality.

IF 4 2区 生物学 Q2 MICROBIOLOGY BMC Microbiology Pub Date : 2024-11-29 DOI:10.1186/s12866-024-03656-z
Mohamed A A Abdella, Gamil E Ibrahim
{"title":"Application of statistical designs strategy to improve cellulase production using agro-waste residue by a novel isolate Bacillus licheniformis strain-MA1 and assessing the enzyme effect on apple juice quality.","authors":"Mohamed A A Abdella, Gamil E Ibrahim","doi":"10.1186/s12866-024-03656-z","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Cellulose is the major part of lignocellulosic biomass. It can be hydrolyzed into glucose units via specific enzymes called cellulases that have been applied in many commercial fields. There are several studies illustrate the influence of enzymes on apple juice clarification. However, to the best of our knowledge, the effect of microbial cellulase on volatile compounds of apple juice is not well known. The present study aimed to assess the effect of cellulase from a new bacterial isolate on the physicochemical properties of apple juice as well as volatile compounds. The hydrolysis of some polysaccharides (cellulose, hemicellulose, pectin) and polyphenols during apple juice production is necessary to reduce cloud sedimentation or color deterioration and increase the yield of juice. So, enzymes from new microbial isolates serve as processing aids to obtain clear juice with a high yield.</p><p><strong>Results: </strong>Cellulase-producing bacterium was isolated, characterized and molecularly identified as Bacillus licheniformis strain-MA1 with an accession number of ON840115. Optimization of medium parameters was implemented using Plackett-Burman design (PBd) followed by Box-Behnken design (BBd) of response surface methodology (RSM). The PBd revealed the three most important (significant) variables including carboxymethyl cellulose (CMC), corn cob, and peptone that had positive impact on cellulase production. Additionally, using the agricultural residue (corn cob) by the bacterial strain as a carbon source helps in reducing the costs of enzyme production, recycling the by-products, and preserving the environment. The optimized medium using PBd and BBd enhanced cellulase production from B. licheniformis strain-MA1 by 6.8-fold. A remarkable increase was observed in juice yield in enzyme treated-juice sample (88.2 ± 0.15%) in comparison with control juice (75.4 ± 0.09%). The total phenolic contents in cloudy and clarified apple juices were 0.957 ± 0.09 and 0.412 ± 0.03 mg/mL, respectively. Also, DPPH and FRAP assays showed a remarkable increase in antioxidant activity (Low IC<sub>50</sub>) in the control sample compared to enzyme treatment. Twenty-seven volatile compounds were extracted using headspace solid-phase microextraction-gas and analysis was performed by GC-MS. The identified volatile constituents belonged to several chemical classes: 15 esters; 6 alcohols; 4 aldehydes and 2 acids. The predominant class in apple juice volatile fraction was esters with a sweet and fruity odor.</p><p><strong>Conclusion: </strong>The crude cellulase obtained from the novel bacterial isolate B. licheniformis strain-MA1 was successfully applied as a clarifying agent in apple juice.</p>","PeriodicalId":9233,"journal":{"name":"BMC Microbiology","volume":"24 1","pages":"511"},"PeriodicalIF":4.0000,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Microbiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12866-024-03656-z","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Cellulose is the major part of lignocellulosic biomass. It can be hydrolyzed into glucose units via specific enzymes called cellulases that have been applied in many commercial fields. There are several studies illustrate the influence of enzymes on apple juice clarification. However, to the best of our knowledge, the effect of microbial cellulase on volatile compounds of apple juice is not well known. The present study aimed to assess the effect of cellulase from a new bacterial isolate on the physicochemical properties of apple juice as well as volatile compounds. The hydrolysis of some polysaccharides (cellulose, hemicellulose, pectin) and polyphenols during apple juice production is necessary to reduce cloud sedimentation or color deterioration and increase the yield of juice. So, enzymes from new microbial isolates serve as processing aids to obtain clear juice with a high yield.

Results: Cellulase-producing bacterium was isolated, characterized and molecularly identified as Bacillus licheniformis strain-MA1 with an accession number of ON840115. Optimization of medium parameters was implemented using Plackett-Burman design (PBd) followed by Box-Behnken design (BBd) of response surface methodology (RSM). The PBd revealed the three most important (significant) variables including carboxymethyl cellulose (CMC), corn cob, and peptone that had positive impact on cellulase production. Additionally, using the agricultural residue (corn cob) by the bacterial strain as a carbon source helps in reducing the costs of enzyme production, recycling the by-products, and preserving the environment. The optimized medium using PBd and BBd enhanced cellulase production from B. licheniformis strain-MA1 by 6.8-fold. A remarkable increase was observed in juice yield in enzyme treated-juice sample (88.2 ± 0.15%) in comparison with control juice (75.4 ± 0.09%). The total phenolic contents in cloudy and clarified apple juices were 0.957 ± 0.09 and 0.412 ± 0.03 mg/mL, respectively. Also, DPPH and FRAP assays showed a remarkable increase in antioxidant activity (Low IC50) in the control sample compared to enzyme treatment. Twenty-seven volatile compounds were extracted using headspace solid-phase microextraction-gas and analysis was performed by GC-MS. The identified volatile constituents belonged to several chemical classes: 15 esters; 6 alcohols; 4 aldehydes and 2 acids. The predominant class in apple juice volatile fraction was esters with a sweet and fruity odor.

Conclusion: The crude cellulase obtained from the novel bacterial isolate B. licheniformis strain-MA1 was successfully applied as a clarifying agent in apple juice.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
BMC Microbiology
BMC Microbiology 生物-微生物学
CiteScore
7.20
自引率
0.00%
发文量
280
审稿时长
3 months
期刊介绍: BMC Microbiology is an open access, peer-reviewed journal that considers articles on analytical and functional studies of prokaryotic and eukaryotic microorganisms, viruses and small parasites, as well as host and therapeutic responses to them and their interaction with the environment.
期刊最新文献
Comparative genomics and virulence potential of Campylobacter coli strains isolated from different sources over 25 years in Brazil. Gut microbiota and mycobiota change with feeding duration in mice on a high-fat and high-fructose diet. Unique genital microbiota in male lichen sclerosus urethral stricture associated with urine exposure. Unveiling the antibacterial action of ambroxol against Staphylococcus aureus bacteria: in vitro, in vivo, and in silico investigation. Application of statistical designs strategy to improve cellulase production using agro-waste residue by a novel isolate Bacillus licheniformis strain-MA1 and assessing the enzyme effect on apple juice quality.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1