Examining the potential causal relationships among smoking behaviors, blood DNA methylation profiles, and the development of coronary heart disease and myocardial infarction.

IF 4.8 2区 医学 Q1 GENETICS & HEREDITY Clinical Epigenetics Pub Date : 2024-11-29 DOI:10.1186/s13148-024-01791-y
Wenhua Li, Pan Dong, Yixiao Li, Jiaxin Tang, Siyang Liu, Ling Tu, Xizhen Xu
{"title":"Examining the potential causal relationships among smoking behaviors, blood DNA methylation profiles, and the development of coronary heart disease and myocardial infarction.","authors":"Wenhua Li, Pan Dong, Yixiao Li, Jiaxin Tang, Siyang Liu, Ling Tu, Xizhen Xu","doi":"10.1186/s13148-024-01791-y","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Smoking has been identified as a standalone risk factor for coronary heart disease (CHD) and myocardial infarction (MI), but the precise underlying mechanisms remain incompletely elucidated.</p><p><strong>Results: </strong>In this study, we conducted a two-sample Mendelian randomization analysis to examine the impact of smoking behaviors (including smoking initiation, age of smoking initiation, cigarettes per day, and smoking cessation) and smoking-related DNA methylation at CpG sites on CHD and MI based on the UK Biobank dataset. Additionally, we included the FinnGen and Biobank Japan datasets as replications and performed a meta-analysis to combine the results from different data sources. We further validated our results using genetic colocalization analysis. In genomic analysis, we provided compelling evidence on the association between genetically predicted smoking initiation and increased susceptibility to CHD and MI. In epigenetic analysis, we identified 11 smoking-related CpG sites linked to CHD risk and 10 smoking-related CpG sites associated with the risk of MI based on the UK Biobank dataset. Subsequently, some of these CpG sites were further replicated using the FinnGen or BBJ datasets. Ultimately, a meta-analysis was conducted to integrate findings from various data sources (3 for CHD, and 2 for MI), revealing that 7 of 11 CpG sites were linked to CHD risk; whereas, 7 of 10 CpG sites were associated with MI risk. Furthermore, we performed genetic colocalization analysis and found that cg19744173 (FBLN7), cg00395063 (ARHGEF12), and cg16822035 (MCF2L) exhibited robust evidence of colocalization with coronary heart disease; whereas, cg19529732 (DIABLO), cg26405020 (FES), and cg08940075 (CNN3) demonstrated strong colocalization evidence with the risk of myocardial infarction.</p><p><strong>Conclusions: </strong>Our research offers a novel insight into the impact of smoking on the susceptibility to CHD and MI through the lens of epigenetic DNA methylation.</p>","PeriodicalId":10366,"journal":{"name":"Clinical Epigenetics","volume":"16 1","pages":"173"},"PeriodicalIF":4.8000,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical Epigenetics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s13148-024-01791-y","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Smoking has been identified as a standalone risk factor for coronary heart disease (CHD) and myocardial infarction (MI), but the precise underlying mechanisms remain incompletely elucidated.

Results: In this study, we conducted a two-sample Mendelian randomization analysis to examine the impact of smoking behaviors (including smoking initiation, age of smoking initiation, cigarettes per day, and smoking cessation) and smoking-related DNA methylation at CpG sites on CHD and MI based on the UK Biobank dataset. Additionally, we included the FinnGen and Biobank Japan datasets as replications and performed a meta-analysis to combine the results from different data sources. We further validated our results using genetic colocalization analysis. In genomic analysis, we provided compelling evidence on the association between genetically predicted smoking initiation and increased susceptibility to CHD and MI. In epigenetic analysis, we identified 11 smoking-related CpG sites linked to CHD risk and 10 smoking-related CpG sites associated with the risk of MI based on the UK Biobank dataset. Subsequently, some of these CpG sites were further replicated using the FinnGen or BBJ datasets. Ultimately, a meta-analysis was conducted to integrate findings from various data sources (3 for CHD, and 2 for MI), revealing that 7 of 11 CpG sites were linked to CHD risk; whereas, 7 of 10 CpG sites were associated with MI risk. Furthermore, we performed genetic colocalization analysis and found that cg19744173 (FBLN7), cg00395063 (ARHGEF12), and cg16822035 (MCF2L) exhibited robust evidence of colocalization with coronary heart disease; whereas, cg19529732 (DIABLO), cg26405020 (FES), and cg08940075 (CNN3) demonstrated strong colocalization evidence with the risk of myocardial infarction.

Conclusions: Our research offers a novel insight into the impact of smoking on the susceptibility to CHD and MI through the lens of epigenetic DNA methylation.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
5.30%
发文量
150
期刊介绍: Clinical Epigenetics, the official journal of the Clinical Epigenetics Society, is an open access, peer-reviewed journal that encompasses all aspects of epigenetic principles and mechanisms in relation to human disease, diagnosis and therapy. Clinical trials and research in disease model organisms are particularly welcome.
期刊最新文献
Causal association between epigenetic age acceleration and two pulmonary vascular diseases: pulmonary arterial hypertension and pulmonary embolism-a bidirectional Mendelian study. Examining the potential causal relationships among smoking behaviors, blood DNA methylation profiles, and the development of coronary heart disease and myocardial infarction. Promoter hypermethylation-mediated downregulation of PAX6 promotes tumor growth and metastasis during the progression of liver cancer. The role of the gut microbiota in the onset and progression of heart failure: insights into epigenetic mechanisms and aging. BRCA loss of function including BRCA1 DNA-methylation, but not BRCA-unrelated homologous recombination deficiency, is associated with platinum hypersensitivity in high-grade ovarian cancer.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1