Air quality and transport behaviour: sensors, field, and survey data from Warsaw, Poland.

IF 5.8 2区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES Scientific Data Pub Date : 2024-11-29 DOI:10.1038/s41597-024-04111-4
Amirhossein Hassani, Anna Nicińska, Arkadiusz Drabicki, Ewa Zawojska, Gabriela Sousa Santos, Grzegorz Kula, Henrik Grythe, Jakub Zawieska, Joanna Jaczewska, Joanna Rachubik, Katarzyna Archanowicz-Kudelska, Katarzyna Zagórska, Maciej Grzenda, Magdalena Kubecka, Marcin Luckner, Michał Jakubczyk, Michał Wolański, Nuria Castell, Paweł Gora, Pål Wilter Skedsmo, Satia Rożynek, Szymon Horosiewicz
{"title":"Air quality and transport behaviour: sensors, field, and survey data from Warsaw, Poland.","authors":"Amirhossein Hassani, Anna Nicińska, Arkadiusz Drabicki, Ewa Zawojska, Gabriela Sousa Santos, Grzegorz Kula, Henrik Grythe, Jakub Zawieska, Joanna Jaczewska, Joanna Rachubik, Katarzyna Archanowicz-Kudelska, Katarzyna Zagórska, Maciej Grzenda, Magdalena Kubecka, Marcin Luckner, Michał Jakubczyk, Michał Wolański, Nuria Castell, Paweł Gora, Pål Wilter Skedsmo, Satia Rożynek, Szymon Horosiewicz","doi":"10.1038/s41597-024-04111-4","DOIUrl":null,"url":null,"abstract":"<p><p>The present study describes the data sets produced in Warsaw, Poland with the aim of developing tools and methods for the implementation of human-centred and data-driven solutions to the enhancement of sustainable mobility transition. This study focuses on school commutes and alternatives to private cars for children drop off and pick up from primary schools. The dataset enables the complex analysis of interactions between determinants of transport mode choice, revealed choices, and air quality impact. We draw on four data collection methods, namely, (i) air quality and noise sensors' measurements, (ii) in-person observations of transport behaviours, (iii) travel diaries, and (iv) social surveys. Moreover, all trip data from travel diaries are complemented with the calculated attributes of alternative travel modes. The data produced in the project can be also combined with publicly available information on air quality, public transport schedules, and traffic flows. The present data sets help to open new venues for interdisciplinary analyses of sustainable mobility transition effectiveness and efficiency.</p>","PeriodicalId":21597,"journal":{"name":"Scientific Data","volume":"11 1","pages":"1305"},"PeriodicalIF":5.8000,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Data","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41597-024-04111-4","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The present study describes the data sets produced in Warsaw, Poland with the aim of developing tools and methods for the implementation of human-centred and data-driven solutions to the enhancement of sustainable mobility transition. This study focuses on school commutes and alternatives to private cars for children drop off and pick up from primary schools. The dataset enables the complex analysis of interactions between determinants of transport mode choice, revealed choices, and air quality impact. We draw on four data collection methods, namely, (i) air quality and noise sensors' measurements, (ii) in-person observations of transport behaviours, (iii) travel diaries, and (iv) social surveys. Moreover, all trip data from travel diaries are complemented with the calculated attributes of alternative travel modes. The data produced in the project can be also combined with publicly available information on air quality, public transport schedules, and traffic flows. The present data sets help to open new venues for interdisciplinary analyses of sustainable mobility transition effectiveness and efficiency.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Scientific Data
Scientific Data Social Sciences-Education
CiteScore
11.20
自引率
4.10%
发文量
689
审稿时长
16 weeks
期刊介绍: Scientific Data is an open-access journal focused on data, publishing descriptions of research datasets and articles on data sharing across natural sciences, medicine, engineering, and social sciences. Its goal is to enhance the sharing and reuse of scientific data, encourage broader data sharing, and acknowledge those who share their data. The journal primarily publishes Data Descriptors, which offer detailed descriptions of research datasets, including data collection methods and technical analyses validating data quality. These descriptors aim to facilitate data reuse rather than testing hypotheses or presenting new interpretations, methods, or in-depth analyses.
期刊最新文献
Air quality and transport behaviour: sensors, field, and survey data from Warsaw, Poland. GameVibe: a multimodal affective game corpus. Cast vote records: A database of ballots from the 2020 U.S. Election. DERM12345: A Large, Multisource Dermatoscopic Skin Lesion Dataset with 40 Subclasses. Global climatological dataset of undersea acoustic parameters derived from the NCEI World Ocean Atlas 2023.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1