Chromomeres, Topologically Associating Domains and Structural Organization of Chromatin Bodies in Somatic Nuclei (Macronuclei) of Ciliates.

IF 3.3 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Frontiers in bioscience (Landmark edition) Pub Date : 2024-11-08 DOI:10.31083/j.fbl2911378
Vladimir Popenko, Pavel Spirin, Vladimir Prassolov, Olga Leonova
{"title":"Chromomeres, Topologically Associating Domains and Structural Organization of Chromatin Bodies in Somatic Nuclei (Macronuclei) of Ciliates.","authors":"Vladimir Popenko, Pavel Spirin, Vladimir Prassolov, Olga Leonova","doi":"10.31083/j.fbl2911378","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>In the twentieth century, the textbook idea of packaging genomic material in the cell nucleus and metaphase chromosomes was the presence of a hierarchy of structural levels of chromatin organization: nucleosomes - nucleosomal fibrils -30 nm fibrils - chromomeres - chromonemata - mitotic chromosomes. Chromomeres were observed in partially decondensed chromosomes and interphase chromatin as ~100 nm globular structures. They were thought to consist of loops of chromatin fibres attached at their bases to a central protein core. However, Hi-C and other related methods led to a new concept of chromatin organization in the nuclei of higher eukaryotes, according to which nucleosomal fibrils themselves determine the spatial configuration of chromatin in the form of topologically associating domains (TADs), which are formed by a loop extrusion process and are regions whose DNA sequences preferentially contact each other. Somatic macronuclei of ciliates are transcriptionally active, highly polyploid nuclei. A feature of macronuclei is that their genome is represented by a large number of \"gene-sized\" (~1-25 kb) or of \"subchromosomal\" (~50-1700 kb) size minichromosomes. The inactive macronuclear chromatin of \"subchromosomal\" ciliates usually looks like bodies 100-200 nm in size. The aim of this work was to find out which of the models (chromomeres or TADs) is more consistent with the confocal and electron microscopic data on structural organization of chromatin bodies.</p><p><strong>Methods: </strong>Macronuclear chromatin of four \"subchromosomal\" ciliate species (<i>Bursaria truncatella</i>, <i>Paramecium multimicronucleatum</i>, <i>Didinium nasutum</i>, <i>Climacostomum virens</i>) was examined using electron microscopy and confocal microscopy during regular growth, starvation and encystment.</p><p><strong>Results: </strong>Chromatin bodies ~70-200 nm in size observed in the interphase macronuclei consisted of tightly packed nucleosomes. Some of them were interconnected by one or more chromatin fibrils. Under hypotonic conditions <i>in vitro</i>, chromatin bodies decompacted, forming rosette-shaped structures of chromatin fibrils around an electron-dense centre. When the activity of the macronucleus decreased during starvation or encystment, chromatin bodies assembled into chromonema-like fibrils 100-300 nm thick. This data allows us to consider chromatin bodies as analogues of chromomeres. On the other hand, most likely, the formation of DNA loops in chromatin bodies occurs by the loop extrusion as in TADs.</p><p><strong>Conclusions: </strong>The data obtained is well explained by the model, according to which the chromatin bodies of ciliate macronuclei combine features inherent in both chromomeres and TADs; that is, they can be considered as chromomeres with loops packed in the same way as the loops in TADs.</p>","PeriodicalId":73069,"journal":{"name":"Frontiers in bioscience (Landmark edition)","volume":"29 11","pages":"378"},"PeriodicalIF":3.3000,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in bioscience (Landmark edition)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31083/j.fbl2911378","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: In the twentieth century, the textbook idea of packaging genomic material in the cell nucleus and metaphase chromosomes was the presence of a hierarchy of structural levels of chromatin organization: nucleosomes - nucleosomal fibrils -30 nm fibrils - chromomeres - chromonemata - mitotic chromosomes. Chromomeres were observed in partially decondensed chromosomes and interphase chromatin as ~100 nm globular structures. They were thought to consist of loops of chromatin fibres attached at their bases to a central protein core. However, Hi-C and other related methods led to a new concept of chromatin organization in the nuclei of higher eukaryotes, according to which nucleosomal fibrils themselves determine the spatial configuration of chromatin in the form of topologically associating domains (TADs), which are formed by a loop extrusion process and are regions whose DNA sequences preferentially contact each other. Somatic macronuclei of ciliates are transcriptionally active, highly polyploid nuclei. A feature of macronuclei is that their genome is represented by a large number of "gene-sized" (~1-25 kb) or of "subchromosomal" (~50-1700 kb) size minichromosomes. The inactive macronuclear chromatin of "subchromosomal" ciliates usually looks like bodies 100-200 nm in size. The aim of this work was to find out which of the models (chromomeres or TADs) is more consistent with the confocal and electron microscopic data on structural organization of chromatin bodies.

Methods: Macronuclear chromatin of four "subchromosomal" ciliate species (Bursaria truncatella, Paramecium multimicronucleatum, Didinium nasutum, Climacostomum virens) was examined using electron microscopy and confocal microscopy during regular growth, starvation and encystment.

Results: Chromatin bodies ~70-200 nm in size observed in the interphase macronuclei consisted of tightly packed nucleosomes. Some of them were interconnected by one or more chromatin fibrils. Under hypotonic conditions in vitro, chromatin bodies decompacted, forming rosette-shaped structures of chromatin fibrils around an electron-dense centre. When the activity of the macronucleus decreased during starvation or encystment, chromatin bodies assembled into chromonema-like fibrils 100-300 nm thick. This data allows us to consider chromatin bodies as analogues of chromomeres. On the other hand, most likely, the formation of DNA loops in chromatin bodies occurs by the loop extrusion as in TADs.

Conclusions: The data obtained is well explained by the model, according to which the chromatin bodies of ciliate macronuclei combine features inherent in both chromomeres and TADs; that is, they can be considered as chromomeres with loops packed in the same way as the loops in TADs.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.50
自引率
0.00%
发文量
0
期刊最新文献
DLX5 Promotes Radioresistance in Renal Cell Carcinoma by Upregulating c-Myc Expression. Retraction: Huang Y, et al. Sophocarpine inhibits the growth of gastric cancer cells via autophagy and apoptosis. Frontiers in Bioscience-Landmark. 2019; 24: 616-627. CELF6 as an Oncogene in Colorectal Cancer: Targeting Stem-Cell-Like Properties Through Modulation of HOXA5 mRNA Stability. Effects of Arginine Vasopressin on Hippocampal Myelination in an Autism Rat Model: A RNA-seq and Mendelian Randomization Analysis. SENP1 Promotes Caspase-11 Inflammasome Activation and Aggravates Inflammatory Response in Murine Acute Lung Injury Induced by Lipopolysaccharide.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1