HMGB1 Modulates Macrophage Metabolism and Polarization in Ulcerative Colitis by Inhibiting Cpt1a Expression.

IF 3.3 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Frontiers in bioscience (Landmark edition) Pub Date : 2024-11-19 DOI:10.31083/j.fbl2911387
Fenfen Wang, Linfei Luo, Zhengqiang Wu, Lijun Wan, Fan Li, Zhili Wen
{"title":"HMGB1 Modulates Macrophage Metabolism and Polarization in Ulcerative Colitis by Inhibiting Cpt1a Expression.","authors":"Fenfen Wang, Linfei Luo, Zhengqiang Wu, Lijun Wan, Fan Li, Zhili Wen","doi":"10.31083/j.fbl2911387","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Macrophage polarization is involved in the development of ulcerative colitis (UC). This study investigated the mechanism by which high mobility group box-1 protein (HMGB1) regulates macrophage polarization through metabolic reprogramming, thereby contributing to the pathogenesis of UC.</p><p><strong>Methods: </strong>Dextran sulfate sodium (DSS) was used to induce colitis in mice. RAW264.7 cells were polarized to M1 or M2 macrophages <i>in vitro</i> by stimulating with lipopolysaccharide (LPS)/interferon-γ (IFN-γ) or Interleukin-4 (IL-4), respectively. Macrophage infiltration and distribution within colon tissue were assessed by immunohistochemistry and flow cytometry. Glycolysis, fatty acid oxidation (FAO), and inflammatory factors were evaluated using relevant reagent kits. Chromatin Immunoprecipitation (ChIP) and luciferase reporter experiments were performed to study the regulation of Carnitine palmitoyltransferase 1A (Cpt1a) promoter transcriptional activity by HMGB1.</p><p><strong>Results: </strong>The mouse UC model showed upregulated HMGB1 and increased macrophage infiltration. Overexpression of HMGB1 promoted M1 macrophage polarization, increased glycolysis, and reduced FAO, whereas knockdown of HMGB1 promoted M2 macrophage polarization, reduced glycolysis, and increased FAO. HMGB1 negatively regulated Cpt1a expression by inhibiting transcription of the Cpt1a promoter. Knockdown of Cpt1a reversed the effects of small interfering RNA targeting HMGB1 (si-HMGB1) on macrophage metabolism and polarization. Administration of adeno-associated virus (AAV)-shHMGB1 <i>in vivo</i> caused a reduction in UC symptoms and inflammation.</p><p><strong>Conclusions: </strong>HMGB1 modulates macrophage metabolism in UC by inhibiting Cpt1a expression, leading to increased M1 polarization. This provides a theoretical basis for the clinical application of HMGB1 inhibitors in the treatment of UC.</p>","PeriodicalId":73069,"journal":{"name":"Frontiers in bioscience (Landmark edition)","volume":"29 11","pages":"387"},"PeriodicalIF":3.3000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in bioscience (Landmark edition)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31083/j.fbl2911387","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Macrophage polarization is involved in the development of ulcerative colitis (UC). This study investigated the mechanism by which high mobility group box-1 protein (HMGB1) regulates macrophage polarization through metabolic reprogramming, thereby contributing to the pathogenesis of UC.

Methods: Dextran sulfate sodium (DSS) was used to induce colitis in mice. RAW264.7 cells were polarized to M1 or M2 macrophages in vitro by stimulating with lipopolysaccharide (LPS)/interferon-γ (IFN-γ) or Interleukin-4 (IL-4), respectively. Macrophage infiltration and distribution within colon tissue were assessed by immunohistochemistry and flow cytometry. Glycolysis, fatty acid oxidation (FAO), and inflammatory factors were evaluated using relevant reagent kits. Chromatin Immunoprecipitation (ChIP) and luciferase reporter experiments were performed to study the regulation of Carnitine palmitoyltransferase 1A (Cpt1a) promoter transcriptional activity by HMGB1.

Results: The mouse UC model showed upregulated HMGB1 and increased macrophage infiltration. Overexpression of HMGB1 promoted M1 macrophage polarization, increased glycolysis, and reduced FAO, whereas knockdown of HMGB1 promoted M2 macrophage polarization, reduced glycolysis, and increased FAO. HMGB1 negatively regulated Cpt1a expression by inhibiting transcription of the Cpt1a promoter. Knockdown of Cpt1a reversed the effects of small interfering RNA targeting HMGB1 (si-HMGB1) on macrophage metabolism and polarization. Administration of adeno-associated virus (AAV)-shHMGB1 in vivo caused a reduction in UC symptoms and inflammation.

Conclusions: HMGB1 modulates macrophage metabolism in UC by inhibiting Cpt1a expression, leading to increased M1 polarization. This provides a theoretical basis for the clinical application of HMGB1 inhibitors in the treatment of UC.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.50
自引率
0.00%
发文量
0
期刊最新文献
DLX5 Promotes Radioresistance in Renal Cell Carcinoma by Upregulating c-Myc Expression. Retraction: Huang Y, et al. Sophocarpine inhibits the growth of gastric cancer cells via autophagy and apoptosis. Frontiers in Bioscience-Landmark. 2019; 24: 616-627. CELF6 as an Oncogene in Colorectal Cancer: Targeting Stem-Cell-Like Properties Through Modulation of HOXA5 mRNA Stability. Effects of Arginine Vasopressin on Hippocampal Myelination in an Autism Rat Model: A RNA-seq and Mendelian Randomization Analysis. SENP1 Promotes Caspase-11 Inflammasome Activation and Aggravates Inflammatory Response in Murine Acute Lung Injury Induced by Lipopolysaccharide.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1