The High Millimolar Concentration of ATP: A Fundamental & Foundational Feature of Eukaryotic, Archaeotic, and Prokaryotic Domains.

IF 3.3 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Frontiers in bioscience (Landmark edition) Pub Date : 2024-11-19 DOI:10.31083/j.fbl2911384
Jack V Greiner, Thomas Glonek
{"title":"The High Millimolar Concentration of ATP: A Fundamental & Foundational Feature of Eukaryotic, Archaeotic, and Prokaryotic Domains.","authors":"Jack V Greiner, Thomas Glonek","doi":"10.31083/j.fbl2911384","DOIUrl":null,"url":null,"abstract":"<p><p>Measurement of the adenosine triphosphate (ATP) concentration among different cells, tissues and organs and even across the phylogenetic tree ordinarily yields exceedingly high concentrations at the millimolar (mM) level. This represents a conundrum in that ATP-driven cellular functions only require micromolar (μM) values. Considering that nature is ordinarily conservative in the generation of high-energy phosphatic metabolites such as ATP, a potential major role for ATP has been completely overlooked and may be of paramount importance because ATP is a hydrotrope. In all phylogenetic domains, reports have established that the excessively high mM concentration of ATP is present in studies of eukaryotic cellular and tissue homogenates, living tissues, and a living organ as well as archaeotic and prokaryotic organisms. These ATP concentrations are also present in contemporary relatives of microorganisms having progenitors existing in the Precambrian Era. This feature is fundamental to cell biology across taxonomic domains. These features are interpreted as serving a foundational molecular function for maintaining organismal homeostasis. We hypothesize that ATP prevents pathological protein aggregation and maintains protein solubility through its hydrotropic feature in cells, tissues, and organs.</p>","PeriodicalId":73069,"journal":{"name":"Frontiers in bioscience (Landmark edition)","volume":"29 11","pages":"384"},"PeriodicalIF":3.3000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in bioscience (Landmark edition)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31083/j.fbl2911384","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Measurement of the adenosine triphosphate (ATP) concentration among different cells, tissues and organs and even across the phylogenetic tree ordinarily yields exceedingly high concentrations at the millimolar (mM) level. This represents a conundrum in that ATP-driven cellular functions only require micromolar (μM) values. Considering that nature is ordinarily conservative in the generation of high-energy phosphatic metabolites such as ATP, a potential major role for ATP has been completely overlooked and may be of paramount importance because ATP is a hydrotrope. In all phylogenetic domains, reports have established that the excessively high mM concentration of ATP is present in studies of eukaryotic cellular and tissue homogenates, living tissues, and a living organ as well as archaeotic and prokaryotic organisms. These ATP concentrations are also present in contemporary relatives of microorganisms having progenitors existing in the Precambrian Era. This feature is fundamental to cell biology across taxonomic domains. These features are interpreted as serving a foundational molecular function for maintaining organismal homeostasis. We hypothesize that ATP prevents pathological protein aggregation and maintains protein solubility through its hydrotropic feature in cells, tissues, and organs.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.50
自引率
0.00%
发文量
0
期刊最新文献
DLX5 Promotes Radioresistance in Renal Cell Carcinoma by Upregulating c-Myc Expression. Retraction: Huang Y, et al. Sophocarpine inhibits the growth of gastric cancer cells via autophagy and apoptosis. Frontiers in Bioscience-Landmark. 2019; 24: 616-627. CELF6 as an Oncogene in Colorectal Cancer: Targeting Stem-Cell-Like Properties Through Modulation of HOXA5 mRNA Stability. Effects of Arginine Vasopressin on Hippocampal Myelination in an Autism Rat Model: A RNA-seq and Mendelian Randomization Analysis. SENP1 Promotes Caspase-11 Inflammasome Activation and Aggravates Inflammatory Response in Murine Acute Lung Injury Induced by Lipopolysaccharide.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1