Hyphenated Centrifugal Microsolid Phase Extraction and Centrifugal Acceleration Thin-Layer Chromatography in a Single Device: An Innovative Approach to Perform Consecutive Extraction and Separation
{"title":"Hyphenated Centrifugal Microsolid Phase Extraction and Centrifugal Acceleration Thin-Layer Chromatography in a Single Device: An Innovative Approach to Perform Consecutive Extraction and Separation","authors":"Arezoo Eskandari, Reyhaneh Namdari, Shahram Seidi","doi":"10.1021/acs.analchem.4c04252","DOIUrl":null,"url":null,"abstract":"An innovative approach for extracting and separating analytes consecutively from complex matrixes was introduced for the first time. The approach involves applying centrifugal force to a novel circular chip to expedite the process of microsolid phase extraction and centrifugal acceleration thin-layer chromatography, followed by red–green–blue (RGB) analysis as a simple, fast, and in situ detection method. Furthermore, the natural product of rice husk was utilized to create a sorbent with great adsorption capabilities. In this method, curcumin and phenazopyridine were employed as model drugs. The one-variable-at-a-time (OVAT) method was used to study the factors that affect the extraction and separation. Under the optimized conditions, a good relationship was observed between the |<i>R</i>| + |<i>B</i>| intensity and the concentration of analytes within the range of 1.0–10.0 μg/mL (<i>R</i><sup>2</sup> = 0.9903) for curcumin and 0.1–7.5 μg/mL (<i>R</i><sup>2</sup> = 0.9933) for phenazopyridine in urine samples. Intra- and interday RSDs% (<i>n</i> = 3) were obtained at less than 5.6 and 7.1%, respectively. In urine samples, the limit of detection values was 0.75 μg/mL for curcumin and 0.05 μg/mL for phenazopyridine, and relative recovery values were in the acceptable range of 85.0–100.2%. The suggested approach has the appropriate sensitivity, good accuracy, and acceptable applicability to determine curcumin and phenazopyridine in complicated matrices.","PeriodicalId":27,"journal":{"name":"Analytical Chemistry","volume":"26 1","pages":""},"PeriodicalIF":6.7000,"publicationDate":"2024-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.analchem.4c04252","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
An innovative approach for extracting and separating analytes consecutively from complex matrixes was introduced for the first time. The approach involves applying centrifugal force to a novel circular chip to expedite the process of microsolid phase extraction and centrifugal acceleration thin-layer chromatography, followed by red–green–blue (RGB) analysis as a simple, fast, and in situ detection method. Furthermore, the natural product of rice husk was utilized to create a sorbent with great adsorption capabilities. In this method, curcumin and phenazopyridine were employed as model drugs. The one-variable-at-a-time (OVAT) method was used to study the factors that affect the extraction and separation. Under the optimized conditions, a good relationship was observed between the |R| + |B| intensity and the concentration of analytes within the range of 1.0–10.0 μg/mL (R2 = 0.9903) for curcumin and 0.1–7.5 μg/mL (R2 = 0.9933) for phenazopyridine in urine samples. Intra- and interday RSDs% (n = 3) were obtained at less than 5.6 and 7.1%, respectively. In urine samples, the limit of detection values was 0.75 μg/mL for curcumin and 0.05 μg/mL for phenazopyridine, and relative recovery values were in the acceptable range of 85.0–100.2%. The suggested approach has the appropriate sensitivity, good accuracy, and acceptable applicability to determine curcumin and phenazopyridine in complicated matrices.
期刊介绍:
Analytical Chemistry, a peer-reviewed research journal, focuses on disseminating new and original knowledge across all branches of analytical chemistry. Fundamental articles may explore general principles of chemical measurement science and need not directly address existing or potential analytical methodology. They can be entirely theoretical or report experimental results. Contributions may cover various phases of analytical operations, including sampling, bioanalysis, electrochemistry, mass spectrometry, microscale and nanoscale systems, environmental analysis, separations, spectroscopy, chemical reactions and selectivity, instrumentation, imaging, surface analysis, and data processing. Papers discussing known analytical methods should present a significant, original application of the method, a notable improvement, or results on an important analyte.