{"title":"Discharge reactor for fabricating efficient supported metal catalysts at room temperature in the absence of H2","authors":"Peng Liu, Xin-Yu Meng, Xujun Wang, Yiyi Zhao, Yu-Long Men, Yun-Xiang Pan","doi":"10.1002/aic.18669","DOIUrl":null,"url":null,"abstract":"Supported metal catalysts have been widely applied and commonly fabricated through the H<sub>2</sub> reduction process. Herein, we develop a H<sub>2</sub>-free room-temperature discharge-driven reduction (RT-DR) reactor for fabricating supported metal catalysts at room temperature without H<sub>2</sub>. By RT-DR reactor, a catalyst with pseudo-boehmite (PB) as support (CdS/Pt/PB) is fabricated. In visible-light-driven photocatalytic H<sub>2</sub>O splitting to H<sub>2</sub>, CdS/Pt/PB shows a H<sub>2</sub> evolution rate of 1132 μmol h<sup>−1</sup>, which is greatly enhanced than that on catalyst prepared by traditional H<sub>2</sub>-reduction (633 μmol h<sup>−1</sup>). RT-DR reactor is also used to prepare a catalyst with low sodium PB (LSPB) as support (CdS/Pt/LSPB). In visible-light-driven photocatalytic H<sub>2</sub>O splitting to H<sub>2</sub>, CdS/Pt/LSPB shows a H<sub>2</sub> evolution rate of 2554 μmol h<sup>−1</sup>, which is 2.5 times higher than that on catalyst prepared by traditional H<sub>2</sub>-reduction (1029 μmol h<sup>−1</sup>). Thus, RT-DR reactor has high efficiency and universality in preparing catalysts, thus offering a great potential for commercialization.","PeriodicalId":120,"journal":{"name":"AIChE Journal","volume":"74 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AIChE Journal","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/aic.18669","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Supported metal catalysts have been widely applied and commonly fabricated through the H2 reduction process. Herein, we develop a H2-free room-temperature discharge-driven reduction (RT-DR) reactor for fabricating supported metal catalysts at room temperature without H2. By RT-DR reactor, a catalyst with pseudo-boehmite (PB) as support (CdS/Pt/PB) is fabricated. In visible-light-driven photocatalytic H2O splitting to H2, CdS/Pt/PB shows a H2 evolution rate of 1132 μmol h−1, which is greatly enhanced than that on catalyst prepared by traditional H2-reduction (633 μmol h−1). RT-DR reactor is also used to prepare a catalyst with low sodium PB (LSPB) as support (CdS/Pt/LSPB). In visible-light-driven photocatalytic H2O splitting to H2, CdS/Pt/LSPB shows a H2 evolution rate of 2554 μmol h−1, which is 2.5 times higher than that on catalyst prepared by traditional H2-reduction (1029 μmol h−1). Thus, RT-DR reactor has high efficiency and universality in preparing catalysts, thus offering a great potential for commercialization.
期刊介绍:
The AIChE Journal is the premier research monthly in chemical engineering and related fields. This peer-reviewed and broad-based journal reports on the most important and latest technological advances in core areas of chemical engineering as well as in other relevant engineering disciplines. To keep abreast with the progressive outlook of the profession, the Journal has been expanding the scope of its editorial contents to include such fast developing areas as biotechnology, electrochemical engineering, and environmental engineering.
The AIChE Journal is indeed the global communications vehicle for the world-renowned researchers to exchange top-notch research findings with one another. Subscribing to the AIChE Journal is like having immediate access to nine topical journals in the field.
Articles are categorized according to the following topical areas:
Biomolecular Engineering, Bioengineering, Biochemicals, Biofuels, and Food
Inorganic Materials: Synthesis and Processing
Particle Technology and Fluidization
Process Systems Engineering
Reaction Engineering, Kinetics and Catalysis
Separations: Materials, Devices and Processes
Soft Materials: Synthesis, Processing and Products
Thermodynamics and Molecular-Scale Phenomena
Transport Phenomena and Fluid Mechanics.