Prediction of Multi-Pharmacokinetics Property in Multi-Species: Bayesian Neural Network Stacking Model with Uncertainty

IF 4.5 2区 医学 Q2 MEDICINE, RESEARCH & EXPERIMENTAL Molecular Pharmaceutics Pub Date : 2024-11-07 DOI:10.1021/acs.molpharmaceut.4c0040610.1021/acs.molpharmaceut.4c00406
Yuanyuan Zhang, Zhiyin Xie, Fu Xiao, Jie Yu, Zhehuan Fan, Shihui Sun, Jiangshan Shi, Zunyun Fu, Xutong Li, Dingyan Wang*, Mingyue Zheng* and Xiaomin Luo*, 
{"title":"Prediction of Multi-Pharmacokinetics Property in Multi-Species: Bayesian Neural Network Stacking Model with Uncertainty","authors":"Yuanyuan Zhang,&nbsp;Zhiyin Xie,&nbsp;Fu Xiao,&nbsp;Jie Yu,&nbsp;Zhehuan Fan,&nbsp;Shihui Sun,&nbsp;Jiangshan Shi,&nbsp;Zunyun Fu,&nbsp;Xutong Li,&nbsp;Dingyan Wang*,&nbsp;Mingyue Zheng* and Xiaomin Luo*,&nbsp;","doi":"10.1021/acs.molpharmaceut.4c0040610.1021/acs.molpharmaceut.4c00406","DOIUrl":null,"url":null,"abstract":"<p >Pharmacokinetic (PK) properties of a drug are vital attributes influencing its therapeutic effectiveness, playing an important role in the drug development process. Focusing on the difficult task of predicting PK parameters, we compiled an extensive data set comprising parameters across multiple species. Building upon this groundwork, we introduced the PKStack ensemble model to predict PK parameters across diverse species. PKStack integrates a variety of base models and includes uncertainty in its predictions. We also manually collected PK data from animals as an external test set. We predicted a total of 45 tasks for nine PK parameters in five species, and in general, the prediction accuracy was better for intravenous injections, including parameters such as human <i>V</i><sub>d</sub> (R<sup>2</sup> = 0.72, RMSE = 0.31), human CL (R<sup>2</sup> = 0.52, RMSE = 0.32), and others. In addition to predictive accuracy, we also considered the interpretability of the results and the definition of the model’s application domain. Based on the findings, our model has great potential for practical applications in drug discovery.</p>","PeriodicalId":52,"journal":{"name":"Molecular Pharmaceutics","volume":"21 12","pages":"6177–6192 6177–6192"},"PeriodicalIF":4.5000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Pharmaceutics","FirstCategoryId":"3","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.molpharmaceut.4c00406","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Pharmacokinetic (PK) properties of a drug are vital attributes influencing its therapeutic effectiveness, playing an important role in the drug development process. Focusing on the difficult task of predicting PK parameters, we compiled an extensive data set comprising parameters across multiple species. Building upon this groundwork, we introduced the PKStack ensemble model to predict PK parameters across diverse species. PKStack integrates a variety of base models and includes uncertainty in its predictions. We also manually collected PK data from animals as an external test set. We predicted a total of 45 tasks for nine PK parameters in five species, and in general, the prediction accuracy was better for intravenous injections, including parameters such as human Vd (R2 = 0.72, RMSE = 0.31), human CL (R2 = 0.52, RMSE = 0.32), and others. In addition to predictive accuracy, we also considered the interpretability of the results and the definition of the model’s application domain. Based on the findings, our model has great potential for practical applications in drug discovery.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Molecular Pharmaceutics
Molecular Pharmaceutics 医学-药学
CiteScore
8.00
自引率
6.10%
发文量
391
审稿时长
2 months
期刊介绍: Molecular Pharmaceutics publishes the results of original research that contributes significantly to the molecular mechanistic understanding of drug delivery and drug delivery systems. The journal encourages contributions describing research at the interface of drug discovery and drug development. Scientific areas within the scope of the journal include physical and pharmaceutical chemistry, biochemistry and biophysics, molecular and cellular biology, and polymer and materials science as they relate to drug and drug delivery system efficacy. Mechanistic Drug Delivery and Drug Targeting research on modulating activity and efficacy of a drug or drug product is within the scope of Molecular Pharmaceutics. Theoretical and experimental peer-reviewed research articles, communications, reviews, and perspectives are welcomed.
期刊最新文献
Issue Publication Information Issue Editorial Masthead The Future of Pharmaceutics: Showcasing Emerging Leaders in Drug Delivery Prediction of Self-Association and Solution Behavior of Monoclonal Antibodies Using the QCM-D Metric of Loosely Interacting Layer. Machine Learning Models for Predicting Monoclonal Antibody Biophysical Properties from Molecular Dynamics Simulations and Deep Learning-Based Surface Descriptors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1