{"title":"Dataset of Centella Asiatica leaves for quality assessment and machine learning applications","authors":"Rohini Jadhav , Mayuri Molawade , Amol Bhosle , Yogesh Suryawanshi , Kailas Patil , Prawit Chumchu","doi":"10.1016/j.dib.2024.111150","DOIUrl":null,"url":null,"abstract":"<div><div><em>Centella asiatica</em> is a significant medicinal herb extensively used in traditional oriental medicine and gaining global popularity. The primary constituents of <em>Centella asiatica</em> leaves are triterpenoid saponins, which are predominantly believed to be responsible for its therapeutic properties. Ensuring the use of high-quality leaves in herbal medicine preparation is crucial across all medicinal practices. To address this quality control issue using machine learning applications, we have developed an image dataset of <em>Centella asiatica</em> leaves. The images were captured using Samsung Galaxy M21 mobile phones and depict the leaves in “Dried,” “Healthy,” and “Unhealthy” states. These states are further divided into “Single” and “Multiple” leaves categories, with “Single” leaves being further classified into “Front” and “Back” views to facilitate a comprehensive study. The images were pre-processed and standardized to 1024 × 768 dimensions, resulting in a dataset comprising a total of 9094 images. This dataset is instrumental in the development and evaluation of image recognition algorithms, serving as a foundational resource for computer vision research. Moreover, it provides a valuable platform for testing and validating algorithms in areas such as image categorization and object detection. For researchers exploring the medicinal potential of <em>Centella asiatica</em> in traditional medicine, this dataset offers critical information on the plantʼs health, thereby advancing research in herbal medicine and ethnopharmacology.</div></div>","PeriodicalId":10973,"journal":{"name":"Data in Brief","volume":"57 ","pages":"Article 111150"},"PeriodicalIF":1.0000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Data in Brief","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352340924011120","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Centella asiatica is a significant medicinal herb extensively used in traditional oriental medicine and gaining global popularity. The primary constituents of Centella asiatica leaves are triterpenoid saponins, which are predominantly believed to be responsible for its therapeutic properties. Ensuring the use of high-quality leaves in herbal medicine preparation is crucial across all medicinal practices. To address this quality control issue using machine learning applications, we have developed an image dataset of Centella asiatica leaves. The images were captured using Samsung Galaxy M21 mobile phones and depict the leaves in “Dried,” “Healthy,” and “Unhealthy” states. These states are further divided into “Single” and “Multiple” leaves categories, with “Single” leaves being further classified into “Front” and “Back” views to facilitate a comprehensive study. The images were pre-processed and standardized to 1024 × 768 dimensions, resulting in a dataset comprising a total of 9094 images. This dataset is instrumental in the development and evaluation of image recognition algorithms, serving as a foundational resource for computer vision research. Moreover, it provides a valuable platform for testing and validating algorithms in areas such as image categorization and object detection. For researchers exploring the medicinal potential of Centella asiatica in traditional medicine, this dataset offers critical information on the plantʼs health, thereby advancing research in herbal medicine and ethnopharmacology.
期刊介绍:
Data in Brief provides a way for researchers to easily share and reuse each other''s datasets by publishing data articles that: -Thoroughly describe your data, facilitating reproducibility. -Make your data, which is often buried in supplementary material, easier to find. -Increase traffic towards associated research articles and data, leading to more citations. -Open up doors for new collaborations. Because you never know what data will be useful to someone else, Data in Brief welcomes submissions that describe data from all research areas.