Geological type recognition for shield machine using a semi-supervised variational auto-encoder-based adversarial method

IF 6.7 1区 工程技术 Q1 CONSTRUCTION & BUILDING TECHNOLOGY Tunnelling and Underground Space Technology Pub Date : 2024-12-01 DOI:10.1016/j.tust.2024.106258
Haodi Wang , Chengjin Qin , Honggan Yu , Chengliang Liu
{"title":"Geological type recognition for shield machine using a semi-supervised variational auto-encoder-based adversarial method","authors":"Haodi Wang ,&nbsp;Chengjin Qin ,&nbsp;Honggan Yu ,&nbsp;Chengliang Liu","doi":"10.1016/j.tust.2024.106258","DOIUrl":null,"url":null,"abstract":"<div><div>In the process of tunneling, accurate and timely recognition of the geological type is significant to optimize the control parameters of the tunneling machine, improving tunneling efficiency and avoiding accidents. The shield machine operator in shield tunneling machine cannot directly observe the geological environment due to the closed working environment, so the soft method that can indirectly recognize the geological type by the machine parameters has become a research hotspot. However, most current soft methods use only a small amount of labeled data for supervised learning, and large amounts of unlabeled data is wasted. In order to use all data to improve the recognition performance of the classifier, a semi-supervised variational auto-encoder-based adversarial method (VAE-EMGAN) is proposed. Firstly, 50 parameters associated with geological types are selected and pre-processed, then the Variational Auto-Encoder (VAE) is trained by unlabeled data, and the generated part of VAE is added to the structure of Enhanced Multi-Classification Adversarial Generative Network (EMGAN) as a generator. Finally, the recognition accuracy of classifier is improved through adversarial training with labeled data, unlabeled data and generated data. We used data from upper and lower tunnels in Singapore to create two tasks to verify the validity and generalization performance of VEVE-EMGAN. The results show that the proposed model not only achieves high accuracy of all test sets on both tasks, but also has much better generalization performance than other models. Mean accuracy is 10.82%, 17.68%, 11.05%, 17.72%, 17.45%, 12.68% and 5.27% higher than SVM, KNN, RF, XGBoost, MLP, DNN and CNN respectively of test set 2 on task A; Mean accuracy is 13.06%, 12.80%, 7.64%, 18.31%, 8.74%, 7.94% and 4.05% higher than SVM, KNN, RF, XGBoost, MLP, DNN and CNN respectively of test set 2 on task B. In particular, the performance of the adversarial trained classifier is better than that has the same structure but separately trained classifier. Therefore, this method can use unlabeled data for adversarial training to improve the classification accuracy and generalization performance of the classifier, which has important implications for engineering practice.</div></div>","PeriodicalId":49414,"journal":{"name":"Tunnelling and Underground Space Technology","volume":"156 ","pages":"Article 106258"},"PeriodicalIF":6.7000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tunnelling and Underground Space Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S088677982400676X","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

In the process of tunneling, accurate and timely recognition of the geological type is significant to optimize the control parameters of the tunneling machine, improving tunneling efficiency and avoiding accidents. The shield machine operator in shield tunneling machine cannot directly observe the geological environment due to the closed working environment, so the soft method that can indirectly recognize the geological type by the machine parameters has become a research hotspot. However, most current soft methods use only a small amount of labeled data for supervised learning, and large amounts of unlabeled data is wasted. In order to use all data to improve the recognition performance of the classifier, a semi-supervised variational auto-encoder-based adversarial method (VAE-EMGAN) is proposed. Firstly, 50 parameters associated with geological types are selected and pre-processed, then the Variational Auto-Encoder (VAE) is trained by unlabeled data, and the generated part of VAE is added to the structure of Enhanced Multi-Classification Adversarial Generative Network (EMGAN) as a generator. Finally, the recognition accuracy of classifier is improved through adversarial training with labeled data, unlabeled data and generated data. We used data from upper and lower tunnels in Singapore to create two tasks to verify the validity and generalization performance of VEVE-EMGAN. The results show that the proposed model not only achieves high accuracy of all test sets on both tasks, but also has much better generalization performance than other models. Mean accuracy is 10.82%, 17.68%, 11.05%, 17.72%, 17.45%, 12.68% and 5.27% higher than SVM, KNN, RF, XGBoost, MLP, DNN and CNN respectively of test set 2 on task A; Mean accuracy is 13.06%, 12.80%, 7.64%, 18.31%, 8.74%, 7.94% and 4.05% higher than SVM, KNN, RF, XGBoost, MLP, DNN and CNN respectively of test set 2 on task B. In particular, the performance of the adversarial trained classifier is better than that has the same structure but separately trained classifier. Therefore, this method can use unlabeled data for adversarial training to improve the classification accuracy and generalization performance of the classifier, which has important implications for engineering practice.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Tunnelling and Underground Space Technology
Tunnelling and Underground Space Technology 工程技术-工程:土木
CiteScore
11.90
自引率
18.80%
发文量
454
审稿时长
10.8 months
期刊介绍: Tunnelling and Underground Space Technology is an international journal which publishes authoritative articles encompassing the development of innovative uses of underground space and the results of high quality research into improved, more cost-effective techniques for the planning, geo-investigation, design, construction, operation and maintenance of underground and earth-sheltered structures. The journal provides an effective vehicle for the improved worldwide exchange of information on developments in underground technology - and the experience gained from its use - and is strongly committed to publishing papers on the interdisciplinary aspects of creating, planning, and regulating underground space.
期刊最新文献
Geological type recognition for shield machine using a semi-supervised variational auto-encoder-based adversarial method A novel hybrid SPH-DEM approach for simulating rockburst behavior in tunnel excavation Damage distribution characteristics and space optimizations of the large-diameter deep multi-holes blasting in thick ore bodies A novel global re-localization method for underground mining vehicles in haulage roadways: A case study of solid-state LiDAR-equipped load-haul-dump vehicles Mechanical properties and damage characteristics of granite surrounding rock in deep tunnel under thermal-hydro-mechanical coupling condition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1