The calculating method of SCF for CFST K-joints with array-arranged internal studs

IF 4 2区 工程技术 Q1 CONSTRUCTION & BUILDING TECHNOLOGY Journal of Constructional Steel Research Pub Date : 2024-11-29 DOI:10.1016/j.jcsr.2024.109191
Qingxiong Wu, Jianping Luo, Kangming Chen, Qiaofeng Zheng
{"title":"The calculating method of SCF for CFST K-joints with array-arranged internal studs","authors":"Qingxiong Wu,&nbsp;Jianping Luo,&nbsp;Kangming Chen,&nbsp;Qiaofeng Zheng","doi":"10.1016/j.jcsr.2024.109191","DOIUrl":null,"url":null,"abstract":"<div><div>To study the stress concentration factor (SCF) in the concrete-filled steel tubular K-joints with array-arranged internal stud (CFST KSA-joint), the CFST KSA-joints full-size specimen tests were carried out, the accuracy of the solid finite element (FE) nonlinear analysis method was validated, the mechanism of the effect of internal stud on the SCF of CFST KSA-joints were revealed, the theory of equivalent wall thickness was established, a simplified curved beam with equivalent spring support was proposed, and the wall thickness correction coefficient was derived, a CFST KSA-joint SCF calculation method with high accuracy was developed. The key study findings indicate that the deployment of array-arranged internal studs can effectively mitigates stress concentration in concrete-filled steel tubular K-joints (CFST K-joints), resulting in an 88.7 % reduction in SCF. Comparison of FE and test results showed a maximum deviation of only 6.30 % in displacement and 5.14 % in hot-spot stress. Employing the CFST K-joints SCF calculation method to calculate the CFST KSA-joint SCF has an error of up to 42.3 %. Sensitivity analysis reveals that CFST KSA-joint chord wall thickness and inclined angle of the brace to the chord significantly influence SCF. Furthermore, a positive correlation was observed between stripping distance and hot-spot stress at the chord's tensile side. The SCF decreases with increasing stud diameter. Utilizing the equivalent wall thickness theory, the derived CFST KSA-joint SCF calculation method exhibits an error lower than 19.6 %, representing a 127 % improvement in accuracy compared to CFST K-joints SCF calculation methods that do not consider the stud.</div></div>","PeriodicalId":15557,"journal":{"name":"Journal of Constructional Steel Research","volume":"226 ","pages":"Article 109191"},"PeriodicalIF":4.0000,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Constructional Steel Research","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0143974X24007417","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

To study the stress concentration factor (SCF) in the concrete-filled steel tubular K-joints with array-arranged internal stud (CFST KSA-joint), the CFST KSA-joints full-size specimen tests were carried out, the accuracy of the solid finite element (FE) nonlinear analysis method was validated, the mechanism of the effect of internal stud on the SCF of CFST KSA-joints were revealed, the theory of equivalent wall thickness was established, a simplified curved beam with equivalent spring support was proposed, and the wall thickness correction coefficient was derived, a CFST KSA-joint SCF calculation method with high accuracy was developed. The key study findings indicate that the deployment of array-arranged internal studs can effectively mitigates stress concentration in concrete-filled steel tubular K-joints (CFST K-joints), resulting in an 88.7 % reduction in SCF. Comparison of FE and test results showed a maximum deviation of only 6.30 % in displacement and 5.14 % in hot-spot stress. Employing the CFST K-joints SCF calculation method to calculate the CFST KSA-joint SCF has an error of up to 42.3 %. Sensitivity analysis reveals that CFST KSA-joint chord wall thickness and inclined angle of the brace to the chord significantly influence SCF. Furthermore, a positive correlation was observed between stripping distance and hot-spot stress at the chord's tensile side. The SCF decreases with increasing stud diameter. Utilizing the equivalent wall thickness theory, the derived CFST KSA-joint SCF calculation method exhibits an error lower than 19.6 %, representing a 127 % improvement in accuracy compared to CFST K-joints SCF calculation methods that do not consider the stud.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Constructional Steel Research
Journal of Constructional Steel Research 工程技术-工程:土木
CiteScore
7.90
自引率
19.50%
发文量
550
审稿时长
46 days
期刊介绍: The Journal of Constructional Steel Research provides an international forum for the presentation and discussion of the latest developments in structural steel research and their applications. It is aimed not only at researchers but also at those likely to be most affected by research results, i.e. designers and fabricators. Original papers of a high standard dealing with all aspects of steel research including theoretical and experimental research on elements, assemblages, connection and material properties are considered for publication.
期刊最新文献
Topology optimization of trusses considering global stability and member buckling Robustness-based assessment and monitoring of steel truss railway bridges to prevent progressive collapse The bond-slip behavior of H-shaped steel embedded in UHPC under reversed cyclic loading Elevated temperature material properties of cold-formed advanced high strength steel channel sections Multi-parameter coupling modeling method and hybrid mechanism of concrete-encased CFST hybrid structures
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1