Steel‑aluminum clinched joints mechanical properties and strength prediction under different geometric parameters

IF 4 2区 工程技术 Q1 CONSTRUCTION & BUILDING TECHNOLOGY Journal of Constructional Steel Research Pub Date : 2024-11-30 DOI:10.1016/j.jcsr.2024.109196
Yue Zhang , Changhui Liao , Tao Wang , Changyou Xu , Jianbiao Peng , Bei Lei , Jiachuan Jiang
{"title":"Steel‑aluminum clinched joints mechanical properties and strength prediction under different geometric parameters","authors":"Yue Zhang ,&nbsp;Changhui Liao ,&nbsp;Tao Wang ,&nbsp;Changyou Xu ,&nbsp;Jianbiao Peng ,&nbsp;Bei Lei ,&nbsp;Jiachuan Jiang","doi":"10.1016/j.jcsr.2024.109196","DOIUrl":null,"url":null,"abstract":"<div><div>With the evolution of modularization and prefabrication in construction, there is a growing adoption of prefabricated thin-wall steel and aluminum structures for lightweight buildings and interior decoration. Clinching emerges as a proficient method for achieving heterogeneous metal connections, offering benefits such as streamlined processes, reduced material usage, environmental friendliness, and potential for automation. This study focuses on high-strength steel DP590 and aluminum alloy AW5754-H22, exploring various process parameters (including punch diameter, punch fillet radius, extensible die diameter, and extensible die depth) tailored for clinching experiments on thin steel and aluminum plates. The research analyzes how these process parameters affect the geometric characteristics of the joints and investigates their mechanical properties through static shear tests. Findings indicate that interlocks exceeding 0.29 mm lead to neck cracks during the clinching process. Additionally, the energy absorption of the specimens in button separation exceeds that in neck fracture by 44 % under comparable maximum failure loads in static shear. Optimal process parameters identified are SR5605-SR60310, achieving a maximum failure load of 4.14kN and an energy absorption value of 12.37 J in static shear tests. Finally, a method is proposed to calculate the shear strength of steel‑aluminum clinched joints based on the transmission dynamics of infectious diseases model (SIR model), accounting for the influence of geometric parameters on the static performance of the joints. This approach accurately describes the load-displacement curve trend and predicts the static shear strength of steel‑aluminum clinched joints effectively.</div></div>","PeriodicalId":15557,"journal":{"name":"Journal of Constructional Steel Research","volume":"226 ","pages":"Article 109196"},"PeriodicalIF":4.0000,"publicationDate":"2024-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Constructional Steel Research","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0143974X24007466","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

With the evolution of modularization and prefabrication in construction, there is a growing adoption of prefabricated thin-wall steel and aluminum structures for lightweight buildings and interior decoration. Clinching emerges as a proficient method for achieving heterogeneous metal connections, offering benefits such as streamlined processes, reduced material usage, environmental friendliness, and potential for automation. This study focuses on high-strength steel DP590 and aluminum alloy AW5754-H22, exploring various process parameters (including punch diameter, punch fillet radius, extensible die diameter, and extensible die depth) tailored for clinching experiments on thin steel and aluminum plates. The research analyzes how these process parameters affect the geometric characteristics of the joints and investigates their mechanical properties through static shear tests. Findings indicate that interlocks exceeding 0.29 mm lead to neck cracks during the clinching process. Additionally, the energy absorption of the specimens in button separation exceeds that in neck fracture by 44 % under comparable maximum failure loads in static shear. Optimal process parameters identified are SR5605-SR60310, achieving a maximum failure load of 4.14kN and an energy absorption value of 12.37 J in static shear tests. Finally, a method is proposed to calculate the shear strength of steel‑aluminum clinched joints based on the transmission dynamics of infectious diseases model (SIR model), accounting for the influence of geometric parameters on the static performance of the joints. This approach accurately describes the load-displacement curve trend and predicts the static shear strength of steel‑aluminum clinched joints effectively.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Constructional Steel Research
Journal of Constructional Steel Research 工程技术-工程:土木
CiteScore
7.90
自引率
19.50%
发文量
550
审稿时长
46 days
期刊介绍: The Journal of Constructional Steel Research provides an international forum for the presentation and discussion of the latest developments in structural steel research and their applications. It is aimed not only at researchers but also at those likely to be most affected by research results, i.e. designers and fabricators. Original papers of a high standard dealing with all aspects of steel research including theoretical and experimental research on elements, assemblages, connection and material properties are considered for publication.
期刊最新文献
Topology optimization of trusses considering global stability and member buckling Robustness-based assessment and monitoring of steel truss railway bridges to prevent progressive collapse The bond-slip behavior of H-shaped steel embedded in UHPC under reversed cyclic loading Elevated temperature material properties of cold-formed advanced high strength steel channel sections Multi-parameter coupling modeling method and hybrid mechanism of concrete-encased CFST hybrid structures
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1