Chenggong Wang , Haoran Cheng , Junjie Li , Zhao Xu , Changze Xu , Zhansheng Lin , Guangqiao Zhang , Guotao Yang
{"title":"Steel-concrete-steel sandwich composite pylons for cable-stayed bridges: structural behaviour of cable anchorage","authors":"Chenggong Wang , Haoran Cheng , Junjie Li , Zhao Xu , Changze Xu , Zhansheng Lin , Guangqiao Zhang , Guotao Yang","doi":"10.1016/j.jcsr.2024.109202","DOIUrl":null,"url":null,"abstract":"<div><div>The cable-stayed bridge pylon is an important load-bearing component in bridges, especially the anchorage zone, which requires both high stiffness and load-bearing capacity. The steel-concrete-steel (SCS) sandwich composite structures provide a new alternative structural form for bridge pylons with excellent strength, stiffness, and cost-effectiveness. Besides, the modular construction of SCS sandwich composite bridge pylons achieve higher construction efficiency than traditional concrete bridge pylons. A 1:2 scaled model test was designed according to the actual project to investigate the structural behaviour of SCS sandwich composite cable anchorage under cable loading. Firstly, the stress distributions and load-displacement curves of inner and outer steel plates, and concrete cracks in the pylon anchorage zone were analyzed. Further, a simplified frame model was adopted to analyze the stresses in the cable pylon anchorage, which demonstrated that the SCS sandwich composite structures can improve the structural performance of cable anchorage. In addition, based on the finite element model verified by experimental results, the effects of section steel ratio, load-bearing plate area, section reinforcement ratio, and concrete strength on the load-bearing capacity and stress distribution in the anchorage zone were investigated. The results show that within a certain range, increasing the reinforcement ratio and load-bearing plate area can significantly increase the load carrying capacity of the cable anchorage, while the effects of increasing the cross-section reinforcement ratio and concrete strength are insignificant. The results of this paper can provide guidance to engineers in the practical application of SCS sandwich composite pylons.</div></div>","PeriodicalId":15557,"journal":{"name":"Journal of Constructional Steel Research","volume":"226 ","pages":"Article 109202"},"PeriodicalIF":4.0000,"publicationDate":"2024-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Constructional Steel Research","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0143974X24007521","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The cable-stayed bridge pylon is an important load-bearing component in bridges, especially the anchorage zone, which requires both high stiffness and load-bearing capacity. The steel-concrete-steel (SCS) sandwich composite structures provide a new alternative structural form for bridge pylons with excellent strength, stiffness, and cost-effectiveness. Besides, the modular construction of SCS sandwich composite bridge pylons achieve higher construction efficiency than traditional concrete bridge pylons. A 1:2 scaled model test was designed according to the actual project to investigate the structural behaviour of SCS sandwich composite cable anchorage under cable loading. Firstly, the stress distributions and load-displacement curves of inner and outer steel plates, and concrete cracks in the pylon anchorage zone were analyzed. Further, a simplified frame model was adopted to analyze the stresses in the cable pylon anchorage, which demonstrated that the SCS sandwich composite structures can improve the structural performance of cable anchorage. In addition, based on the finite element model verified by experimental results, the effects of section steel ratio, load-bearing plate area, section reinforcement ratio, and concrete strength on the load-bearing capacity and stress distribution in the anchorage zone were investigated. The results show that within a certain range, increasing the reinforcement ratio and load-bearing plate area can significantly increase the load carrying capacity of the cable anchorage, while the effects of increasing the cross-section reinforcement ratio and concrete strength are insignificant. The results of this paper can provide guidance to engineers in the practical application of SCS sandwich composite pylons.
期刊介绍:
The Journal of Constructional Steel Research provides an international forum for the presentation and discussion of the latest developments in structural steel research and their applications. It is aimed not only at researchers but also at those likely to be most affected by research results, i.e. designers and fabricators. Original papers of a high standard dealing with all aspects of steel research including theoretical and experimental research on elements, assemblages, connection and material properties are considered for publication.