In situ preparation of carbon/zeolite composite materials derived from coal gasification fine slag for removing malachite green: Performance evaluation and mechanism insight

IF 6.3 2区 工程技术 Q1 ENGINEERING, CHEMICAL Journal of water process engineering Pub Date : 2024-12-01 DOI:10.1016/j.jwpe.2024.106670
Xinzhang Shi , Longhua Xu , Jia Tian , Kaiqian Shu , Zhoujie Wang , Kai Xue , Houqin Wu , Donghui Wang , Guohuan Li
{"title":"In situ preparation of carbon/zeolite composite materials derived from coal gasification fine slag for removing malachite green: Performance evaluation and mechanism insight","authors":"Xinzhang Shi ,&nbsp;Longhua Xu ,&nbsp;Jia Tian ,&nbsp;Kaiqian Shu ,&nbsp;Zhoujie Wang ,&nbsp;Kai Xue ,&nbsp;Houqin Wu ,&nbsp;Donghui Wang ,&nbsp;Guohuan Li","doi":"10.1016/j.jwpe.2024.106670","DOIUrl":null,"url":null,"abstract":"<div><div>The stockpiling of coal gasification fine slag (CGFS) and the discharge of organic wastewater pose serious environmental threats. The complex synthesis process and limited pollutant removal capacity of CGFS-based adsorbents impede their efficient utilization in organic wastewater purification. In this work, carbon/zeolite composite materials (CZCM) derived from CGFS were prepared in situ using a one-pot method without further crystallization, achieving an ultra-high adsorption capacity (9705 mg/g) and excellent renewability for malachite green (MG). CZCM was identified as a typical mesoporous material with an abundant pore structure, facilitating the migration of MG within the material. Notably, various metal elements (e.g., iron and calcium) and chemical groups (e.g., carboxyl and hydroxyl) from CGFS were retained through this novel preparation method, providing additional adsorption sites and enhancing MG adsorption. The adsorption kinetics and thermodynamics results indicated that physisorption and multilayer adsorption were the primary adsorption modes of MG by CZCM, with the adsorption rate limited by internal diffusion. Furthermore, the adsorption process was found to be exothermic, spontaneous, and entropy-decreasing. Mechanistic investigations revealed that the exceptional adsorption performance of MG by CZCM was primarily attributed to electrostatic attraction and ion exchange, with hydrogen bonding and π-π interactions also playing significant roles. This study provides new insights into the development of CGFS-based adsorbents for organic wastewater treatment, promoting the efficient conversion and practical application of CGFS.</div></div>","PeriodicalId":17528,"journal":{"name":"Journal of water process engineering","volume":"69 ","pages":"Article 106670"},"PeriodicalIF":6.3000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of water process engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214714424019020","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The stockpiling of coal gasification fine slag (CGFS) and the discharge of organic wastewater pose serious environmental threats. The complex synthesis process and limited pollutant removal capacity of CGFS-based adsorbents impede their efficient utilization in organic wastewater purification. In this work, carbon/zeolite composite materials (CZCM) derived from CGFS were prepared in situ using a one-pot method without further crystallization, achieving an ultra-high adsorption capacity (9705 mg/g) and excellent renewability for malachite green (MG). CZCM was identified as a typical mesoporous material with an abundant pore structure, facilitating the migration of MG within the material. Notably, various metal elements (e.g., iron and calcium) and chemical groups (e.g., carboxyl and hydroxyl) from CGFS were retained through this novel preparation method, providing additional adsorption sites and enhancing MG adsorption. The adsorption kinetics and thermodynamics results indicated that physisorption and multilayer adsorption were the primary adsorption modes of MG by CZCM, with the adsorption rate limited by internal diffusion. Furthermore, the adsorption process was found to be exothermic, spontaneous, and entropy-decreasing. Mechanistic investigations revealed that the exceptional adsorption performance of MG by CZCM was primarily attributed to electrostatic attraction and ion exchange, with hydrogen bonding and π-π interactions also playing significant roles. This study provides new insights into the development of CGFS-based adsorbents for organic wastewater treatment, promoting the efficient conversion and practical application of CGFS.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
煤气化细渣原位制备去除孔雀石绿用碳/沸石复合材料:性能评价及机理洞察
煤气化细渣的堆积和有机废水的排放对环境造成了严重的威胁。cfs基吸附剂合成工艺复杂,去除污染物能力有限,阻碍了其在有机废水净化中的有效利用。本文采用一锅法原位制备了由CGFS衍生的碳/沸石复合材料(CZCM),无需进一步结晶,对孔雀石绿(mg)具有超高的吸附量(9705 mg/g)和良好的可再生性。CZCM为典型的介孔材料,具有丰富的孔隙结构,有利于MG在材料内部的迁移。值得注意的是,这种新型制备方法保留了CGFS中的各种金属元素(如铁和钙)和化学基团(如羧基和羟基),提供了额外的吸附位点,增强了MG的吸附。吸附动力学和热力学结果表明,物理吸附和多层吸附是CZCM对MG的主要吸附方式,吸附速率受内扩散的限制。吸附过程是自发的、放热的、熵递减的。机理研究表明,CZCM吸附MG的优异性能主要归因于静电吸引和离子交换,氢键和π-π相互作用也起重要作用。本研究为基于CGFS的有机废水吸附剂的开发提供了新的思路,促进了CGFS的高效转化和实际应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of water process engineering
Journal of water process engineering Biochemistry, Genetics and Molecular Biology-Biotechnology
CiteScore
10.70
自引率
8.60%
发文量
846
审稿时长
24 days
期刊介绍: The Journal of Water Process Engineering aims to publish refereed, high-quality research papers with significant novelty and impact in all areas of the engineering of water and wastewater processing . Papers on advanced and novel treatment processes and technologies are particularly welcome. The Journal considers papers in areas such as nanotechnology and biotechnology applications in water, novel oxidation and separation processes, membrane processes (except those for desalination) , catalytic processes for the removal of water contaminants, sustainable processes, water reuse and recycling, water use and wastewater minimization, integrated/hybrid technology, process modeling of water treatment and novel treatment processes. Submissions on the subject of adsorbents, including standard measurements of adsorption kinetics and equilibrium will only be considered if there is a genuine case for novelty and contribution, for example highly novel, sustainable adsorbents and their use: papers on activated carbon-type materials derived from natural matter, or surfactant-modified clays and related minerals, would not fulfil this criterion. The Journal particularly welcomes contributions involving environmentally, economically and socially sustainable technology for water treatment, including those which are energy-efficient, with minimal or no chemical consumption, and capable of water recycling and reuse that minimizes the direct disposal of wastewater to the aquatic environment. Papers that describe novel ideas for solving issues related to water quality and availability are also welcome, as are those that show the transfer of techniques from other disciplines. The Journal will consider papers dealing with processes for various water matrices including drinking water (except desalination), domestic, urban and industrial wastewaters, in addition to their residues. It is expected that the journal will be of particular relevance to chemical and process engineers working in the field. The Journal welcomes Full Text papers, Short Communications, State-of-the-Art Reviews and Letters to Editors and Case Studies
期刊最新文献
Fe/Mn-MOF-driven rapid arsenic decontamination: Mechanistic elucidation of adsorption processes and performance optimization Selenium removal from water using modified biochar: A critical review and insights to adsorption mechanisms through computational analyses Evaluating flow cytometric metrics for enhancing microbial monitoring in drinking water treatment processes Effect of organic matter on the expression of biochemical properties of partial nitrification immobilized filler and analysis of microbial communities Bacterial biofilm inactivation by plasma activated nanobubble water
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1