Rare-earth oxychalcogenide Eu2ZnGe2OS6: a phase-matching infrared nonlinear optical material with [GeOS3] units†

IF 2.6 3区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY CrystEngComm Pub Date : 2024-11-11 DOI:10.1039/D4CE01051E
Guili Wang, Wentian Wu, Chunxiao Li and Jiyong Yao
{"title":"Rare-earth oxychalcogenide Eu2ZnGe2OS6: a phase-matching infrared nonlinear optical material with [GeOS3] units†","authors":"Guili Wang, Wentian Wu, Chunxiao Li and Jiyong Yao","doi":"10.1039/D4CE01051E","DOIUrl":null,"url":null,"abstract":"<p >Oxychalcogenides have been highly anticipated as nonlinear optical (NLO) crystals because of their excellent optical properties. Herein, a rare-earth oxychalcogenide Eu<small><sub>2</sub></small>ZnGe<small><sub>2</sub></small>OS<small><sub>6</sub></small> was successfully designed and synthesized. It crystallizes in the non-centrosymmetric <em>P</em><img>2<small><sub>1</sub></small><em>m</em> space group with highly polarized mixed-anion [GeOS<small><sub>3</sub></small>] units and exhibits an indirect band gap of 2.22 eV, a moderate second harmonic generation (SHG) response (0.4 × AGS), and phase-matching properties. Additionally, Eu<small><sub>2</sub></small>ZnGe<small><sub>2</sub></small>OS<small><sub>6</sub></small> exhibits a significant calculated birefringence of 0.173@2090 nm. This research has enriched the rarely studied rare-earth oxychalcogenide system and provided new ideas for the design of promising IR NLO crystals.</p>","PeriodicalId":70,"journal":{"name":"CrystEngComm","volume":" 47","pages":" 6683-6687"},"PeriodicalIF":2.6000,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/ce/d4ce01051e?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"CrystEngComm","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/ce/d4ce01051e","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Oxychalcogenides have been highly anticipated as nonlinear optical (NLO) crystals because of their excellent optical properties. Herein, a rare-earth oxychalcogenide Eu2ZnGe2OS6 was successfully designed and synthesized. It crystallizes in the non-centrosymmetric P21m space group with highly polarized mixed-anion [GeOS3] units and exhibits an indirect band gap of 2.22 eV, a moderate second harmonic generation (SHG) response (0.4 × AGS), and phase-matching properties. Additionally, Eu2ZnGe2OS6 exhibits a significant calculated birefringence of 0.173@2090 nm. This research has enriched the rarely studied rare-earth oxychalcogenide system and provided new ideas for the design of promising IR NLO crystals.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CrystEngComm
CrystEngComm 化学-化学综合
CiteScore
5.50
自引率
9.70%
发文量
747
审稿时长
1.7 months
期刊介绍: Design and understanding of solid-state and crystalline materials
期刊最新文献
Back cover Back cover Back cover Synthesis of 3D composite materials based on ultrathin LDH nanowalls grown in situ on graphene surface and fast-response NO2 gas sensing performance at room temperature† Variations in crystals of flufenamic acid of its methyl and tert-butyl analogues as impurities as determined by partial dissolutions†
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1