Employing a MoO2@NiO heterojunction as a highly selective and efficient electrochemical ethanol-to-acetaldehyde conversion catalyst†

IF 2.6 3区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY CrystEngComm Pub Date : 2024-11-05 DOI:10.1039/D4CE01039F
Junhao Wu, Xiao Zhang, Sijia Ren, Xinhui Lu, Jiaxin Yang and Kui Li
{"title":"Employing a MoO2@NiO heterojunction as a highly selective and efficient electrochemical ethanol-to-acetaldehyde conversion catalyst†","authors":"Junhao Wu, Xiao Zhang, Sijia Ren, Xinhui Lu, Jiaxin Yang and Kui Li","doi":"10.1039/D4CE01039F","DOIUrl":null,"url":null,"abstract":"<p >The electrochemical manipulation of organic compounds offers a promising alternative for the synthesis of valuable organic materials under mild conditions. In this study, the MoO<small><sub>2</sub></small>@NiO heterostructure was successfully synthesized as an efficient thin-film electrode material for electrochemical ethanol oxidation, using amorphous Ni(OH)<small><sub><em>x</em></sub></small> nanosheets as the precursor. During electrocatalytic ethanol oxidation, this electrode exhibited a significantly reduced overpotential, achieving a value of only 1.41 V at a current density of 50 mA cm<small><sup>−2</sup></small>. Additionally, product analysis revealed that the heterojunction electrode demonstrated high faradaic efficiency (70%) and selectivity (80%) for acetaldehyde. The outstanding performance of this electrode can be attributed to the <em>in situ</em> transformation of MoO<small><sub>2</sub></small> species during the catalytic process. In the electrolyte, MoO<small><sub>2</sub></small> exists as MoO<small><sub>4</sub></small><small><sup>2−</sup></small> and undergoes a series of processes including precipitation, dissolution, and redeposition on the electrode surface. These processes lead to the formation of a novel molecular outer layer, significantly enhancing the activity and stability of the electrode material. This study provides valuable insights into the potential replacement of anodes in the electrocatalytic oxidation of ethanol in aqueous solutions, thereby contributing to the development of more efficient and sustainable electrochemical systems.</p>","PeriodicalId":70,"journal":{"name":"CrystEngComm","volume":" 47","pages":" 6701-6706"},"PeriodicalIF":2.6000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"CrystEngComm","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/ce/d4ce01039f","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The electrochemical manipulation of organic compounds offers a promising alternative for the synthesis of valuable organic materials under mild conditions. In this study, the MoO2@NiO heterostructure was successfully synthesized as an efficient thin-film electrode material for electrochemical ethanol oxidation, using amorphous Ni(OH)x nanosheets as the precursor. During electrocatalytic ethanol oxidation, this electrode exhibited a significantly reduced overpotential, achieving a value of only 1.41 V at a current density of 50 mA cm−2. Additionally, product analysis revealed that the heterojunction electrode demonstrated high faradaic efficiency (70%) and selectivity (80%) for acetaldehyde. The outstanding performance of this electrode can be attributed to the in situ transformation of MoO2 species during the catalytic process. In the electrolyte, MoO2 exists as MoO42− and undergoes a series of processes including precipitation, dissolution, and redeposition on the electrode surface. These processes lead to the formation of a novel molecular outer layer, significantly enhancing the activity and stability of the electrode material. This study provides valuable insights into the potential replacement of anodes in the electrocatalytic oxidation of ethanol in aqueous solutions, thereby contributing to the development of more efficient and sustainable electrochemical systems.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CrystEngComm
CrystEngComm 化学-化学综合
CiteScore
5.50
自引率
9.70%
发文量
747
审稿时长
1.7 months
期刊介绍: Design and understanding of solid-state and crystalline materials
期刊最新文献
Back cover Back cover Back cover Synthesis of 3D composite materials based on ultrathin LDH nanowalls grown in situ on graphene surface and fast-response NO2 gas sensing performance at room temperature† Variations in crystals of flufenamic acid of its methyl and tert-butyl analogues as impurities as determined by partial dissolutions†
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1