Daniela Řimnáčová, Vendula Natherová, Tomáš Lokajíček, Matěj Petružálek, Ali Aminzadeh, Martin Racek, Richard Přikryl
{"title":"Thermally induced degradation of Westerly granite microstructure documented by dynamic elastic properties and pore space and damage characteristics","authors":"Daniela Řimnáčová, Vendula Natherová, Tomáš Lokajíček, Matěj Petružálek, Ali Aminzadeh, Martin Racek, Richard Přikryl","doi":"10.1007/s10064-024-04011-2","DOIUrl":null,"url":null,"abstract":"<div><p>Ultrasonic sounding, petrographic image analysis, and mercury intrusion porosimetry was performed on 52 Westerly granite (Rhode Island, USA) specimens exposed to controlled heating from 100 °C to 800 °C. Elastic wave velocities, dynamic elastic moduli, and amplitudes decreased quasilinearly by more than 65% (P-wave), 75% (S-wave), and over 90% (elastic moduli). Damage evaluation by using two crack density parameters proved similar behavior. Direct and indirect evaluation of thermal treatment related microcracks by means of petrographic image analysis and mercury intrusion porosimetry revealed exponential character of porosity evolution, being accelerated above the <span>\\(\\alpha -\\beta\\)</span> quartz phase transition. Discrepancy between thermal treatment and profoundly non-linear increase in porosity and microcrack density can be satisfactorily explained from direct microscopic observation which revealed formation of crushed/powdered minerals within newly formed microcracks in 650‒800 °C range being related to tension-shearing along grain boundaries of phases with contrasting linear thermal expansion coefficients. This damage phenomenon, resulting in the so-called “clogged” porosity evidently overvalued measured elastic wave velocities. Current results thus underline importance of application of various methods / techniques during examination of changes in rock microfabric from decay processes because none of the methods is capable to cover all important factors alone.</p></div>","PeriodicalId":500,"journal":{"name":"Bulletin of Engineering Geology and the Environment","volume":"83 12","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of Engineering Geology and the Environment","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10064-024-04011-2","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Ultrasonic sounding, petrographic image analysis, and mercury intrusion porosimetry was performed on 52 Westerly granite (Rhode Island, USA) specimens exposed to controlled heating from 100 °C to 800 °C. Elastic wave velocities, dynamic elastic moduli, and amplitudes decreased quasilinearly by more than 65% (P-wave), 75% (S-wave), and over 90% (elastic moduli). Damage evaluation by using two crack density parameters proved similar behavior. Direct and indirect evaluation of thermal treatment related microcracks by means of petrographic image analysis and mercury intrusion porosimetry revealed exponential character of porosity evolution, being accelerated above the \(\alpha -\beta\) quartz phase transition. Discrepancy between thermal treatment and profoundly non-linear increase in porosity and microcrack density can be satisfactorily explained from direct microscopic observation which revealed formation of crushed/powdered minerals within newly formed microcracks in 650‒800 °C range being related to tension-shearing along grain boundaries of phases with contrasting linear thermal expansion coefficients. This damage phenomenon, resulting in the so-called “clogged” porosity evidently overvalued measured elastic wave velocities. Current results thus underline importance of application of various methods / techniques during examination of changes in rock microfabric from decay processes because none of the methods is capable to cover all important factors alone.
期刊介绍:
Engineering geology is defined in the statutes of the IAEG as the science devoted to the investigation, study and solution of engineering and environmental problems which may arise as the result of the interaction between geology and the works or activities of man, as well as of the prediction of and development of measures for the prevention or remediation of geological hazards. Engineering geology embraces:
• the applications/implications of the geomorphology, structural geology, and hydrogeological conditions of geological formations;
• the characterisation of the mineralogical, physico-geomechanical, chemical and hydraulic properties of all earth materials involved in construction, resource recovery and environmental change;
• the assessment of the mechanical and hydrological behaviour of soil and rock masses;
• the prediction of changes to the above properties with time;
• the determination of the parameters to be considered in the stability analysis of engineering works and earth masses.