Size-selective hybridization chain reaction for accurate signal amplification in living cancer cells

IF 10.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Science China Chemistry Pub Date : 2024-11-12 DOI:10.1007/s11426-024-2294-x
Ting Chen, Xiaojiao Wang, Rongrong Gao, Meihe Yuan, Mei Chen, Xiao-Bing Zhang, Guoliang Ke
{"title":"Size-selective hybridization chain reaction for accurate signal amplification in living cancer cells","authors":"Ting Chen,&nbsp;Xiaojiao Wang,&nbsp;Rongrong Gao,&nbsp;Meihe Yuan,&nbsp;Mei Chen,&nbsp;Xiao-Bing Zhang,&nbsp;Guoliang Ke","doi":"10.1007/s11426-024-2294-x","DOIUrl":null,"url":null,"abstract":"<div><p>Accurate signal amplification in living cells is highly important in biomedical research and medical diagnostics. Benefiting from its enzyme-free, efficient isothermal signal amplification ability, hybridization chain reaction (HCR) plays an important role in intracellular signal amplification; however, HCR fails the accurate signal amplification in the situation when the properties of some biological targets and analogues are too similar. Particularly, their signal amplification accuracy for mature miRNAs is unsatisfactory due to the signal interference of precursor microRNAs (abbreviated as pre-miRNAs), which also contain the sequence of mature miRNAs. Herein, we develop the first example of size-selective hybridization chain reaction probe for accurate signal amplification, which achieved accurate and sensitive biosensing of mature miRNAs in living cancer cells. Our probe, termed as qTcage, consists of a DNA nanocage for size-selective responsive to mature miRNAs, as well as a quadrivalent tetrahedral DNA structure for HCR signal amplification. Benefiting from the size-selectivity of DNA nanocage, shorter mature miRNAs (19–23 nt) rather than longer pre-miRNAs (60–70 nt) could enter the cavity to release triggers strand, which activates HCR reaction for fluorescence signal recovery. The probe efficiently reduces signal interference of pre-miRNAs and improves the imaging sensitivity for intracellular mature miRNAs, which was successfully applied for mature miRNAs imaging during drug treatment. Overall, this strategy provides the hybridization chain reaction with the feature of size-selective ability, which holds promise for further accurate signal amplification in biological processes study and clinical diagnostics.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":772,"journal":{"name":"Science China Chemistry","volume":"67 12","pages":"4259 - 4266"},"PeriodicalIF":10.4000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science China Chemistry","FirstCategoryId":"1","ListUrlMain":"https://link.springer.com/article/10.1007/s11426-024-2294-x","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Accurate signal amplification in living cells is highly important in biomedical research and medical diagnostics. Benefiting from its enzyme-free, efficient isothermal signal amplification ability, hybridization chain reaction (HCR) plays an important role in intracellular signal amplification; however, HCR fails the accurate signal amplification in the situation when the properties of some biological targets and analogues are too similar. Particularly, their signal amplification accuracy for mature miRNAs is unsatisfactory due to the signal interference of precursor microRNAs (abbreviated as pre-miRNAs), which also contain the sequence of mature miRNAs. Herein, we develop the first example of size-selective hybridization chain reaction probe for accurate signal amplification, which achieved accurate and sensitive biosensing of mature miRNAs in living cancer cells. Our probe, termed as qTcage, consists of a DNA nanocage for size-selective responsive to mature miRNAs, as well as a quadrivalent tetrahedral DNA structure for HCR signal amplification. Benefiting from the size-selectivity of DNA nanocage, shorter mature miRNAs (19–23 nt) rather than longer pre-miRNAs (60–70 nt) could enter the cavity to release triggers strand, which activates HCR reaction for fluorescence signal recovery. The probe efficiently reduces signal interference of pre-miRNAs and improves the imaging sensitivity for intracellular mature miRNAs, which was successfully applied for mature miRNAs imaging during drug treatment. Overall, this strategy provides the hybridization chain reaction with the feature of size-selective ability, which holds promise for further accurate signal amplification in biological processes study and clinical diagnostics.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在活癌细胞中精确放大信号的大小选择性杂交链式反应
准确放大活细胞信号在生物医学研究和医学诊断中具有重要意义。杂交链反应(HCR)由于其无酶、高效的等温信号扩增能力,在细胞内信号扩增中起着重要作用;然而,在某些生物靶点和类似物性质过于相似的情况下,HCR无法实现准确的信号放大。特别是,由于前体microRNAs(简称pre-miRNAs)的信号干扰,它们对成熟miRNAs的信号扩增精度不理想,前体microRNAs也包含成熟miRNAs的序列。在此,我们开发了第一个用于精确信号放大的大小选择性杂交链式反应探针,实现了对活癌细胞中成熟mirna的准确和敏感的生物传感。我们的探针被称为qTcage,由一个DNA纳米笼组成,用于对成熟mirna的大小选择性响应,以及一个用于HCR信号放大的四价四面体DNA结构。得益于DNA纳米笼的大小选择性,较短的成熟mirna (19 - 23nt)比较长的pre- mirna (60 - 70nt)更容易进入空腔释放触发链,激活HCR反应恢复荧光信号。该探针有效降低了pre-miRNAs的信号干扰,提高了细胞内成熟miRNAs的成像灵敏度,成功应用于药物治疗过程中成熟miRNAs的成像。综上所述,该策略为杂交链反应提供了具有大小选择能力的特征,有望在生物过程研究和临床诊断中进一步准确地放大信号。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Science China Chemistry
Science China Chemistry CHEMISTRY, MULTIDISCIPLINARY-
CiteScore
14.40
自引率
7.30%
发文量
3787
审稿时长
2.2 months
期刊介绍: Science China Chemistry, co-sponsored by the Chinese Academy of Sciences and the National Natural Science Foundation of China and published by Science China Press, publishes high-quality original research in both basic and applied chemistry. Indexed by Science Citation Index, it is a premier academic journal in the field. Categories of articles include: Highlights. Brief summaries and scholarly comments on recent research achievements in any field of chemistry. Perspectives. Concise reports on thelatest chemistry trends of interest to scientists worldwide, including discussions of research breakthroughs and interpretations of important science and funding policies. Reviews. In-depth summaries of representative results and achievements of the past 5–10 years in selected topics based on or closely related to the research expertise of the authors, providing a thorough assessment of the significance, current status, and future research directions of the field.
期刊最新文献
In-situ formation of a new cation renders perovskite solar modules with a record efficiency and long-term stability Bionic breathable open framework ionomer for medium-temperature fuel cell Recent advances in exploring new blood-based biomarkers for the early diagnosis of gastric cancer Recent progress on photoactive nonprecious transition-metal complexes Photo-controllable multiple and orthogonal regulation of gene expression by chemically modified oligonucleotides
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1