Spin-orbit entangled moments and magnetic exchange interactions in cobalt-based honeycomb magnets BaCo2(XO4)2 (X = P, As, Sb)

IF 5.4 1区 物理与天体物理 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY npj Quantum Materials Pub Date : 2024-12-02 DOI:10.1038/s41535-024-00713-8
Subhasis Samanta, Fabrizio Cossu, Heung-Sik Kim
{"title":"Spin-orbit entangled moments and magnetic exchange interactions in cobalt-based honeycomb magnets BaCo2(XO4)2 (X = P, As, Sb)","authors":"Subhasis Samanta, Fabrizio Cossu, Heung-Sik Kim","doi":"10.1038/s41535-024-00713-8","DOIUrl":null,"url":null,"abstract":"<p>Co-based honeycomb magnets have been actively studied recently for the potential realization of emergent quantum magnetism therein such as the Kitaev spin liquid. Here we employ density functional and dynamical mean-field theory methods to examine a family of the Kitaev magnet candidates BaCo<sub>2</sub>(<i>X</i>O<sub>4</sub>)<sub>2</sub> (<i>X</i> = P, As, Sb), where the compound with <i>X</i> = Sb being not synthesized yet. Our study confirms the formation of Mott insulating phase and the <i>J</i><sub>eff</sub> = 1/2 spin moments at Co<sup>2+</sup> sites despite the presence of a sizable amount of trigonal crystal field in all three compounds. The pnictogen substitution from phosphorus to antimony significantly changes the in-plane lattice parameters and direct overlap integral between the neighboring Co ions, leading to the suppression of the Heisenberg interaction. More interestingly, the marginal antiferromagnetic nearest-neighbor Kitaev term changes sign into a ferromagnetic one and becomes sizable at the <i>X</i> = Sb limit. Our study suggests that the pnictogen substitution can be a viable route to continuously tune magnetic exchange interactions and to promote magnetic frustration for the realization of potential spin liquid phases in BaCo<sub>2</sub>(<i>X</i>O<sub>4</sub>)<sub>2</sub>.</p>","PeriodicalId":19283,"journal":{"name":"npj Quantum Materials","volume":"26 1","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Quantum Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41535-024-00713-8","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Co-based honeycomb magnets have been actively studied recently for the potential realization of emergent quantum magnetism therein such as the Kitaev spin liquid. Here we employ density functional and dynamical mean-field theory methods to examine a family of the Kitaev magnet candidates BaCo2(XO4)2 (X = P, As, Sb), where the compound with X = Sb being not synthesized yet. Our study confirms the formation of Mott insulating phase and the Jeff = 1/2 spin moments at Co2+ sites despite the presence of a sizable amount of trigonal crystal field in all three compounds. The pnictogen substitution from phosphorus to antimony significantly changes the in-plane lattice parameters and direct overlap integral between the neighboring Co ions, leading to the suppression of the Heisenberg interaction. More interestingly, the marginal antiferromagnetic nearest-neighbor Kitaev term changes sign into a ferromagnetic one and becomes sizable at the X = Sb limit. Our study suggests that the pnictogen substitution can be a viable route to continuously tune magnetic exchange interactions and to promote magnetic frustration for the realization of potential spin liquid phases in BaCo2(XO4)2.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
npj Quantum Materials
npj Quantum Materials Materials Science-Electronic, Optical and Magnetic Materials
CiteScore
10.60
自引率
3.50%
发文量
107
审稿时长
6 weeks
期刊介绍: npj Quantum Materials is an open access journal that publishes works that significantly advance the understanding of quantum materials, including their fundamental properties, fabrication and applications.
期刊最新文献
Spin-orbit entangled moments and magnetic exchange interactions in cobalt-based honeycomb magnets BaCo2(XO4)2 (X = P, As, Sb) Intrinsic second-order topological insulators in two-dimensional polymorphic graphyne with sublattice approximation Quantum phase transition and composite excitations of antiferromagnetic spin trimer chains in a magnetic field 3D Heisenberg universality in the van der Waals antiferromagnet NiPS3 Multinode quantum spin liquids in extended Kitaev honeycomb models
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1