Systematic mapping of antibiotic cross-resistance and collateral sensitivity with chemical genetics

IF 20.5 1区 生物学 Q1 MICROBIOLOGY Nature Microbiology Pub Date : 2024-12-02 DOI:10.1038/s41564-024-01857-w
Nazgul Sakenova, Elisabetta Cacace, Askarbek Orakov, Florian Huber, Vallo Varik, George Kritikos, Jan Michiels, Peer Bork, Pascale Cossart, Camille V. Goemans, Athanasios Typas
{"title":"Systematic mapping of antibiotic cross-resistance and collateral sensitivity with chemical genetics","authors":"Nazgul Sakenova, Elisabetta Cacace, Askarbek Orakov, Florian Huber, Vallo Varik, George Kritikos, Jan Michiels, Peer Bork, Pascale Cossart, Camille V. Goemans, Athanasios Typas","doi":"10.1038/s41564-024-01857-w","DOIUrl":null,"url":null,"abstract":"By acquiring or evolving resistance to one antibiotic, bacteria can become cross-resistant to a second antibiotic, which further limits therapeutic choices. In the opposite scenario, initial resistance leads to collateral sensitivity to a second antibiotic, which can inform cycling or combinatorial treatments. Despite their clinical relevance, our knowledge of both interactions is limited. We used published chemical genetics data of the Escherichia coli single-gene deletion library in 40 antibiotics and devised a metric that discriminates between known cross-resistance and collateral-sensitivity antibiotic interactions. Thereby we inferred 404 cases of cross-resistance and 267 of collateral-sensitivity, expanding the number of known interactions by over threefold. We further validated 64/70 inferred interactions using experimental evolution. By identifying mutants driving these interactions in chemical genetics, we demonstrated that a drug pair can exhibit both interactions depending on the resistance mechanism. Finally, we applied collateral-sensitive drug pairs in combination to reduce antibiotic-resistance development in vitro. Resistance to one antibiotic can make bacteria resistant or sensitive to another antibiotic, opening paths for combinatorial treatments. This study presents an approach to systematically discover and understand such antibiotic relationships.","PeriodicalId":18992,"journal":{"name":"Nature Microbiology","volume":"10 1","pages":"202-216"},"PeriodicalIF":20.5000,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41564-024-01857-w.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Microbiology","FirstCategoryId":"99","ListUrlMain":"https://www.nature.com/articles/s41564-024-01857-w","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

By acquiring or evolving resistance to one antibiotic, bacteria can become cross-resistant to a second antibiotic, which further limits therapeutic choices. In the opposite scenario, initial resistance leads to collateral sensitivity to a second antibiotic, which can inform cycling or combinatorial treatments. Despite their clinical relevance, our knowledge of both interactions is limited. We used published chemical genetics data of the Escherichia coli single-gene deletion library in 40 antibiotics and devised a metric that discriminates between known cross-resistance and collateral-sensitivity antibiotic interactions. Thereby we inferred 404 cases of cross-resistance and 267 of collateral-sensitivity, expanding the number of known interactions by over threefold. We further validated 64/70 inferred interactions using experimental evolution. By identifying mutants driving these interactions in chemical genetics, we demonstrated that a drug pair can exhibit both interactions depending on the resistance mechanism. Finally, we applied collateral-sensitive drug pairs in combination to reduce antibiotic-resistance development in vitro. Resistance to one antibiotic can make bacteria resistant or sensitive to another antibiotic, opening paths for combinatorial treatments. This study presents an approach to systematically discover and understand such antibiotic relationships.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用化学遗传学系统绘制抗生素交叉耐药和连带敏感性图谱
通过获得或进化出对一种抗生素的耐药性,细菌可能对第二种抗生素产生交叉耐药性,这进一步限制了治疗的选择。在相反的情况下,最初的耐药性导致对第二种抗生素的附带敏感性,这可以通知循环或联合治疗。尽管它们具有临床意义,但我们对这两种相互作用的了解有限。我们使用已发表的40种抗生素中大肠杆菌单基因缺失文库的化学遗传学数据,设计了一种区分已知交叉耐药和侧敏抗生素相互作用的指标。因此,我们推断出404例交叉抗性和267例附带敏感性,将已知相互作用的数量扩大了三倍以上。我们使用实验进化进一步验证了64/70推断相互作用。通过在化学遗传学中识别驱动这些相互作用的突变体,我们证明了一个药物对可以根据抗性机制表现出两种相互作用。最后,我们联合应用侧枝敏感药物对,以减少体外抗生素耐药性的发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Nature Microbiology
Nature Microbiology Immunology and Microbiology-Microbiology
CiteScore
44.40
自引率
1.10%
发文量
226
期刊介绍: Nature Microbiology aims to cover a comprehensive range of topics related to microorganisms. This includes: Evolution: The journal is interested in exploring the evolutionary aspects of microorganisms. This may include research on their genetic diversity, adaptation, and speciation over time. Physiology and cell biology: Nature Microbiology seeks to understand the functions and characteristics of microorganisms at the cellular and physiological levels. This may involve studying their metabolism, growth patterns, and cellular processes. Interactions: The journal focuses on the interactions microorganisms have with each other, as well as their interactions with hosts or the environment. This encompasses investigations into microbial communities, symbiotic relationships, and microbial responses to different environments. Societal significance: Nature Microbiology recognizes the societal impact of microorganisms and welcomes studies that explore their practical applications. This may include research on microbial diseases, biotechnology, or environmental remediation. In summary, Nature Microbiology is interested in research related to the evolution, physiology and cell biology of microorganisms, their interactions, and their societal relevance.
期刊最新文献
The sweet side of IL-22 Dietary fibre counters the oncogenic potential of colibactin-producing Escherichia coli in colorectal cancer Climate change will amplify the impacts of harmful microorganisms in aquatic ecosystems Surpassing natural limits in one-carbon assimilation Rethinking concepts of virulence with Neisseria gonorrhoeae
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1