Complexity, interpretability and robustness of GP-based feature engineering in remote sensing

IF 8.2 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Swarm and Evolutionary Computation Pub Date : 2024-12-02 DOI:10.1016/j.swevo.2024.101761
João E. Batista , Adam K. Pindur , Ana I.R. Cabral , Hitoshi Iba , Sara Silva
{"title":"Complexity, interpretability and robustness of GP-based feature engineering in remote sensing","authors":"João E. Batista ,&nbsp;Adam K. Pindur ,&nbsp;Ana I.R. Cabral ,&nbsp;Hitoshi Iba ,&nbsp;Sara Silva","doi":"10.1016/j.swevo.2024.101761","DOIUrl":null,"url":null,"abstract":"<div><div>Feature engineering is a crucial step in machine learning that provides better data for the learning algorithms to induce robust models, and this effort should be adapted to the capabilities of each algorithm. For example, classifiers that do not perform data transformations (e.g., cluster-based) perform better when the different classes are separated, typically requiring preprocessed data. Other models (e.g., decision trees) can perform several splits in the feature space, easily obtaining perfect results in training data, but have a higher risk of overfitting with unprocessed data. We use the rbd-GP and M3GP genetic programming algorithms to induce new features based on the original features, to be used by shallow and deep decision tree and random forest models. M3GP is wrapped around a learning algorithm, using its performance as fitness. This way, the induced features are adapted to the classifier, allowing us to compare the complexity of the features induced for the different classifiers. We measure the complexity of the induced features using several structural and functional complexity metrics found in the literature, also proposing a new metric that measures the separability of classes in the feature space. Like other authors, we use complexity as an interpretability metric, selecting three models to discuss and validate based on their performance and size. We apply these methods to remote sensing classification problems and solve two tasks that are hard due to the high similarity between the land cover classes: detecting cocoa agroforest and forecasting forest degradation up to one year in the future.</div></div>","PeriodicalId":48682,"journal":{"name":"Swarm and Evolutionary Computation","volume":"92 ","pages":"Article 101761"},"PeriodicalIF":8.2000,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Swarm and Evolutionary Computation","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2210650224002992","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Feature engineering is a crucial step in machine learning that provides better data for the learning algorithms to induce robust models, and this effort should be adapted to the capabilities of each algorithm. For example, classifiers that do not perform data transformations (e.g., cluster-based) perform better when the different classes are separated, typically requiring preprocessed data. Other models (e.g., decision trees) can perform several splits in the feature space, easily obtaining perfect results in training data, but have a higher risk of overfitting with unprocessed data. We use the rbd-GP and M3GP genetic programming algorithms to induce new features based on the original features, to be used by shallow and deep decision tree and random forest models. M3GP is wrapped around a learning algorithm, using its performance as fitness. This way, the induced features are adapted to the classifier, allowing us to compare the complexity of the features induced for the different classifiers. We measure the complexity of the induced features using several structural and functional complexity metrics found in the literature, also proposing a new metric that measures the separability of classes in the feature space. Like other authors, we use complexity as an interpretability metric, selecting three models to discuss and validate based on their performance and size. We apply these methods to remote sensing classification problems and solve two tasks that are hard due to the high similarity between the land cover classes: detecting cocoa agroforest and forecasting forest degradation up to one year in the future.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Swarm and Evolutionary Computation
Swarm and Evolutionary Computation COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCEC-COMPUTER SCIENCE, THEORY & METHODS
CiteScore
16.00
自引率
12.00%
发文量
169
期刊介绍: Swarm and Evolutionary Computation is a pioneering peer-reviewed journal focused on the latest research and advancements in nature-inspired intelligent computation using swarm and evolutionary algorithms. It covers theoretical, experimental, and practical aspects of these paradigms and their hybrids, promoting interdisciplinary research. The journal prioritizes the publication of high-quality, original articles that push the boundaries of evolutionary computation and swarm intelligence. Additionally, it welcomes survey papers on current topics and novel applications. Topics of interest include but are not limited to: Genetic Algorithms, and Genetic Programming, Evolution Strategies, and Evolutionary Programming, Differential Evolution, Artificial Immune Systems, Particle Swarms, Ant Colony, Bacterial Foraging, Artificial Bees, Fireflies Algorithm, Harmony Search, Artificial Life, Digital Organisms, Estimation of Distribution Algorithms, Stochastic Diffusion Search, Quantum Computing, Nano Computing, Membrane Computing, Human-centric Computing, Hybridization of Algorithms, Memetic Computing, Autonomic Computing, Self-organizing systems, Combinatorial, Discrete, Binary, Constrained, Multi-objective, Multi-modal, Dynamic, and Large-scale Optimization.
期刊最新文献
Complexity, interpretability and robustness of GP-based feature engineering in remote sensing A Self-adaptive two stage iterative greedy algorithm based job scales for energy-efficient distributed permutation flowshop scheduling problem Two-stage bidirectional coevolutionary algorithm for constrained multi-objective optimization A survey on vehicle–drone cooperative delivery operations optimization: Models, methods, and future research directions Bayesian network structure learning based on discrete artificial jellyfish search: Leveraging scoring and graphical properties
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1