Automation of polymer pressing by robotic handling with in-process parameter optimization

IF 4.3 2区 计算机科学 Q1 AUTOMATION & CONTROL SYSTEMS Robotics and Autonomous Systems Pub Date : 2024-11-21 DOI:10.1016/j.robot.2024.104868
Yuki Asano , Kei Okada , Shintaro Nakagawa , Naoko Yoshie , Junichiro Shiomi
{"title":"Automation of polymer pressing by robotic handling with in-process parameter optimization","authors":"Yuki Asano ,&nbsp;Kei Okada ,&nbsp;Shintaro Nakagawa ,&nbsp;Naoko Yoshie ,&nbsp;Junichiro Shiomi","doi":"10.1016/j.robot.2024.104868","DOIUrl":null,"url":null,"abstract":"<div><div>In this study, we introduce an autonomous system for polymer pressing that integrates robotic manipulation, specialized equipment, and machine learning optimization. This system aims to significantly reduce lead time and human labor in polymer-materials development. Our approach utilizes an arm-type robot to handle polymer beads and operate a press machine, with process parameters autonomously determined by Bayesian optimization. The keys to this automation are custom-designed press tools that are suitable for robotic handling, such as press plates or fork, a gripper—tool interface with tapered convex and concave parts that enables the handling of multiple tools by a single robot gripper, and an integrated control system that synchronizes the robot with the press machine. Additionally, we implement a closed-loop process that incorporates image processing for pressed-polymer recognition and Bayesian optimization for continuous parameter refinement, with an evaluation function that considers polymer-film thickness and press times. Verification experiments demonstrate the capability of the system to autonomously execute pressing operations and effectively propose optimized press parameters.</div></div>","PeriodicalId":49592,"journal":{"name":"Robotics and Autonomous Systems","volume":"185 ","pages":"Article 104868"},"PeriodicalIF":4.3000,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Robotics and Autonomous Systems","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0921889024002525","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, we introduce an autonomous system for polymer pressing that integrates robotic manipulation, specialized equipment, and machine learning optimization. This system aims to significantly reduce lead time and human labor in polymer-materials development. Our approach utilizes an arm-type robot to handle polymer beads and operate a press machine, with process parameters autonomously determined by Bayesian optimization. The keys to this automation are custom-designed press tools that are suitable for robotic handling, such as press plates or fork, a gripper—tool interface with tapered convex and concave parts that enables the handling of multiple tools by a single robot gripper, and an integrated control system that synchronizes the robot with the press machine. Additionally, we implement a closed-loop process that incorporates image processing for pressed-polymer recognition and Bayesian optimization for continuous parameter refinement, with an evaluation function that considers polymer-film thickness and press times. Verification experiments demonstrate the capability of the system to autonomously execute pressing operations and effectively propose optimized press parameters.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于过程参数优化的聚合物机械加工自动化
在这项研究中,我们介绍了一个集成了机器人操作、专用设备和机器学习优化的聚合物压制自主系统。该系统旨在显著减少聚合物材料开发的交货时间和人力劳动。我们的方法利用手臂型机器人来处理聚合物珠和操作压力机,工艺参数由贝叶斯优化自主确定。实现这一自动化的关键是定制设计的适合机器人操作的冲压工具,如压板或压叉,夹具-工具接口,带有锥形凸和凹部件,使单个机器人夹具能够处理多个工具,以及集成控制系统,使机器人与压力机同步。此外,我们实现了一个闭环过程,该过程结合了用于压制聚合物识别的图像处理和用于连续参数优化的贝叶斯优化,以及考虑聚合物膜厚度和压制时间的评估函数。验证实验表明,该系统能够自主执行冲压操作,并有效地提出优化的冲压参数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Robotics and Autonomous Systems
Robotics and Autonomous Systems 工程技术-机器人学
CiteScore
9.00
自引率
7.00%
发文量
164
审稿时长
4.5 months
期刊介绍: Robotics and Autonomous Systems will carry articles describing fundamental developments in the field of robotics, with special emphasis on autonomous systems. An important goal of this journal is to extend the state of the art in both symbolic and sensory based robot control and learning in the context of autonomous systems. Robotics and Autonomous Systems will carry articles on the theoretical, computational and experimental aspects of autonomous systems, or modules of such systems.
期刊最新文献
MOVRO2: Loosely coupled monocular visual radar odometry using factor graph optimization Learning temporal maps of dynamics for mobile robots Towards zero-shot cross-agent transfer learning via latent-space universal notice network CUAHN-VIO: Content-and-uncertainty-aware homography network for visual-inertial odometry Delta- and Kalman-filter designs for multi-sensor pose estimation on spherical mobile mapping systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1