Towards the characterization of representations learned via capsule-based network architectures

IF 5.5 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Neurocomputing Pub Date : 2024-11-28 DOI:10.1016/j.neucom.2024.129027
Saja Tawalbeh, José Oramas
{"title":"Towards the characterization of representations learned via capsule-based network architectures","authors":"Saja Tawalbeh,&nbsp;José Oramas","doi":"10.1016/j.neucom.2024.129027","DOIUrl":null,"url":null,"abstract":"<div><div>Capsule Neural Networks (CapsNets) have been re-introduced as a more compact and interpretable alternative to standard deep neural networks. While recent efforts have proved their compression capabilities, to date, their interpretability properties have not been fully assessed. Here, we conduct a systematic and principled study towards assessing the interpretability of these types of networks. We pay special attention towards analyzing the level to which <em>part-whole</em> relationships are encoded within the learned representation. Our analysis in the MNIST, SVHN, CIFAR-10, and CelebA datasets on several capsule-based architectures suggest that the representations encoded in CapsNets might not be as disentangled nor strictly related to <em>parts-whole</em> relationships as is commonly stated in the literature.</div></div>","PeriodicalId":19268,"journal":{"name":"Neurocomputing","volume":"617 ","pages":"Article 129027"},"PeriodicalIF":5.5000,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurocomputing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925231224017983","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Capsule Neural Networks (CapsNets) have been re-introduced as a more compact and interpretable alternative to standard deep neural networks. While recent efforts have proved their compression capabilities, to date, their interpretability properties have not been fully assessed. Here, we conduct a systematic and principled study towards assessing the interpretability of these types of networks. We pay special attention towards analyzing the level to which part-whole relationships are encoded within the learned representation. Our analysis in the MNIST, SVHN, CIFAR-10, and CelebA datasets on several capsule-based architectures suggest that the representations encoded in CapsNets might not be as disentangled nor strictly related to parts-whole relationships as is commonly stated in the literature.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过基于胶囊的网络架构学习表征
胶囊神经网络(CapsNets)作为一种更紧凑和可解释的替代标准深度神经网络而被重新引入。虽然最近的努力已经证明了它们的压缩能力,但迄今为止,它们的可解释性尚未得到充分评估。在这里,我们对评估这些类型的网络的可解释性进行了系统和原则性的研究。我们特别注意分析部分-整体关系在学习表征中的编码程度。我们对几个基于胶囊架构的MNIST、SVHN、CIFAR-10和CelebA数据集的分析表明,在胶囊中编码的表示可能不像文献中通常所说的那样与部分-整体关系分开或严格相关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Neurocomputing
Neurocomputing 工程技术-计算机:人工智能
CiteScore
13.10
自引率
10.00%
发文量
1382
审稿时长
70 days
期刊介绍: Neurocomputing publishes articles describing recent fundamental contributions in the field of neurocomputing. Neurocomputing theory, practice and applications are the essential topics being covered.
期刊最新文献
Agricultural surface water extraction in environmental remote sensing: A novel semantic segmentation model emphasizing contextual information enhancement and foreground detail attention Physics embedded neural network: Novel data-free approach towards scientific computing and applications in transfer learning View-Channel Mixer Network for Double Incomplete Multi-View Multi-Label learning Diffusion models for image super-resolution: State-of-the-art and future directions Investigating the effects of recursion in convolutional layers using analytical methods
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1