Composition-, temperature-, and field- driven magnetic phase transitions in Bi0.9Ca0.1Fe1-xMnxO3 multiferroics

IF 2.5 3区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Journal of Magnetism and Magnetic Materials Pub Date : 2024-12-01 DOI:10.1016/j.jmmm.2024.172703
V.A. Khomchenko, M. Das, J.A. Paixão
{"title":"Composition-, temperature-, and field- driven magnetic phase transitions in Bi0.9Ca0.1Fe1-xMnxO3 multiferroics","authors":"V.A. Khomchenko,&nbsp;M. Das,&nbsp;J.A. Paixão","doi":"10.1016/j.jmmm.2024.172703","DOIUrl":null,"url":null,"abstract":"<div><div>A magnetometric study of Bi<sub>0.9</sub>Ca<sub>0.1</sub>Fe<sub>1-x</sub>Mn<sub>x</sub>O<sub>3</sub> (0.3 ≤ <em>x</em> ≤ 0.5) compounds was conducted over broad temperature and field ranges to clarify the impact of Mn substitution on the magnetic properties of Ca<sup>2+</sup>-doped bismuth ferrite-based multiferroics near the polar-antipolar phase boundary. Room-temperature X-ray diffraction measurements confirm the stability of the polar rhombohedral <em>R3c</em> structure up to <em>x</em> = 0.4, with a transition to the antipolar orthorhombic <em>Pnam</em> phase occurring through a mixed structural state at <em>x</em>≈ 0.45. Magnetic measurements of rhombohedral-structure samples reveal an evolution in magnetization behavior, indicative of a transformation from the cycloidal spin order, characteristic of low-doped bismuth ferrites, to a collinear antiferromagnetic arrangement as Mn content increases. Magnetic field modifies the collinear antiferromagnetic structure towards a canted antiferromagnetic one. The threshold field for the metamagnetic transformation decreases with decreasing temperature and increasing Mn concentration.</div></div>","PeriodicalId":366,"journal":{"name":"Journal of Magnetism and Magnetic Materials","volume":"614 ","pages":"Article 172703"},"PeriodicalIF":2.5000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Magnetism and Magnetic Materials","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304885324009946","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

A magnetometric study of Bi0.9Ca0.1Fe1-xMnxO3 (0.3 ≤ x ≤ 0.5) compounds was conducted over broad temperature and field ranges to clarify the impact of Mn substitution on the magnetic properties of Ca2+-doped bismuth ferrite-based multiferroics near the polar-antipolar phase boundary. Room-temperature X-ray diffraction measurements confirm the stability of the polar rhombohedral R3c structure up to x = 0.4, with a transition to the antipolar orthorhombic Pnam phase occurring through a mixed structural state at x≈ 0.45. Magnetic measurements of rhombohedral-structure samples reveal an evolution in magnetization behavior, indicative of a transformation from the cycloidal spin order, characteristic of low-doped bismuth ferrites, to a collinear antiferromagnetic arrangement as Mn content increases. Magnetic field modifies the collinear antiferromagnetic structure towards a canted antiferromagnetic one. The threshold field for the metamagnetic transformation decreases with decreasing temperature and increasing Mn concentration.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Magnetism and Magnetic Materials
Journal of Magnetism and Magnetic Materials 物理-材料科学:综合
CiteScore
5.30
自引率
11.10%
发文量
1149
审稿时长
59 days
期刊介绍: The Journal of Magnetism and Magnetic Materials provides an important forum for the disclosure and discussion of original contributions covering the whole spectrum of topics, from basic magnetism to the technology and applications of magnetic materials. The journal encourages greater interaction between the basic and applied sub-disciplines of magnetism with comprehensive review articles, in addition to full-length contributions. In addition, other categories of contributions are welcome, including Critical Focused issues, Current Perspectives and Outreach to the General Public. Main Categories: Full-length articles: Technically original research documents that report results of value to the communities that comprise the journal audience. The link between chemical, structural and microstructural properties on the one hand and magnetic properties on the other hand are encouraged. In addition to general topics covering all areas of magnetism and magnetic materials, the full-length articles also include three sub-sections, focusing on Nanomagnetism, Spintronics and Applications. The sub-section on Nanomagnetism contains articles on magnetic nanoparticles, nanowires, thin films, 2D materials and other nanoscale magnetic materials and their applications. The sub-section on Spintronics contains articles on magnetoresistance, magnetoimpedance, magneto-optical phenomena, Micro-Electro-Mechanical Systems (MEMS), and other topics related to spin current control and magneto-transport phenomena. The sub-section on Applications display papers that focus on applications of magnetic materials. The applications need to show a connection to magnetism. Review articles: Review articles organize, clarify, and summarize existing major works in the areas covered by the Journal and provide comprehensive citations to the full spectrum of relevant literature.
期刊最新文献
Composition-, temperature-, and field- driven magnetic phase transitions in Bi0.9Ca0.1Fe1-xMnxO3 multiferroics Structural and magnetic properties of Co2FeGa full-Heusler alloy thin films with low Gilbert damping Optimize magnetocaloric properties and preparation efficiency of off-stoichiometric La1.1-xCexFe11.7-yMnySi1.3 hydrides through systematic investigation of the 1:13 phase formation mechanism Improving the Curie temperature of monolayer CrBr3 by Li adsorption: A first-principles study Dzyaloshinskii–Moriya interaction gradient driven skyrmion based energy efficient leaky integrate fire neuron
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1